Publications by authors named "Mattia Mason"

Self-immolative (SI) spacers are degradable chemical connectors widely used in prodrugs and drug conjugates to release pharmaceutical ingredients in response to specific stimuli. Amine-carbamate SI spacers are particularly versatile, as they have been used to release different hydroxy cargos, ranging from 2° and 3° alcohols to phenols and oximes. In this work, we describe the ability of three amine-carbamate SI spacers to release three structurally similar imidazoquinoline payloads, bearing either a 1°, a 2° or a 3° alcohol as the leaving group.

View Article and Find Full Text PDF

The installation of aldehydes into synthetic protein ligands is an efficient strategy to engage protein lysine residues in remarkably stable imine bonds and augment the compound affinity and selectivity for their biological targets. The high frequency of lysine residues in proteins and the reversibility of the covalent ligand-protein bond support the application of aldehyde-bearing ligands, holding promises for their future use as drugs. This review highlights the increasing exploitation of salicylaldehyde modules in various classes of protein binders, aimed at the reversible-covalent engagement of lysine residues.

View Article and Find Full Text PDF

Amine-carbamate self-immolative (SI) spacers represent practical and versatile tools in targeted prodrugs, but their slow degradation mechanism limits drug activation at the site of disease. We engineered a pyrrolidine-carbamate SI spacer with a tertiary amine handle which strongly accelerates the spacer cyclization to give a bicyclic urea and the free hydroxy groups of either cytotoxic (Camptothecin) or immunostimulatory (Resiquimod) drugs. In silico conformational analysis and pK calculations suggest a plausible mechanism for the superior efficacy of the advanced SI spacer compared to state-of-art analogues.

View Article and Find Full Text PDF