Publications by authors named "Matti Molkkari"

Background: Conventional measures of heart rate variability (HRV) have shown only modest associations with sudden cardiac death (SCD). Detrended fluctuation analysis (DFA), with novel methodological developments to evaluate the short-term scaling exponent, is a potentially superior method compared to conventional HRV tools.

Objectives: In this study, the authors studied the analysis of the association between DFA and SCD.

View Article and Find Full Text PDF

Aerobic and anaerobic thresholds of the three-zone exercise model are often used to evaluate the exercise intensity and optimize the training load. Conventionally, these thresholds are derived from the respiratory gas exchange or blood lactate concentration measurements. Here, we introduce and validate a computational method based on the RR interval (RRI) dynamics of the heart rate (HR) measurement, which enables a simple, yet reasonably accurate estimation of both metabolic thresholds.

View Article and Find Full Text PDF

Roughness of driven elastic interfaces in random media is typically understood to be characterized by a single roughness exponent ζ. We show that at the depinning threshold, due to symmetry breaking caused by the direction of the driving force, elastic interfaces with local, long-range, and mean-field elasticity exhibit asymmetric roughness. It is manifested as a skewed distribution of the local interface heights, and can be quantified by using detrended fluctuation analysis to compute a spectrum of local, segment-level scaling exponents.

View Article and Find Full Text PDF

Fluctuations of the human heart beat constitute a complex system that has been studied mostly under resting conditions using conventional time series analysis methods. During physical exercise, the variability of the fluctuations is reduced, and the time series of beat-to-beat RR intervals (RRIs) become highly non-stationary. Here we develop a dynamical approach to analyze the time evolution of RRI correlations in running across various training and racing events under real-world conditions.

View Article and Find Full Text PDF