The main aim of the work was to utilize heterozygosity of industrial yeast strains to construct new baker's yeast strains. Commercial baker's yeast strain ALKO 743, its more ethanol tolerant descendant ALKO 554 selected initially for growth over 300 generations in increasing ethanol concentrations in a glucose medium, and ALKO 3460 from an old domestic sour dough starter were used as starting strains. Isolated meiotic segregants of the strains were characterized genetically for sporulation ability and mating type, and the ploidy was determined physically.
View Article and Find Full Text PDFI was fortunate to enter yeast research at the Alko Research Laboratories with a strong tradition in yeast biochemistry and physiology studies. At the same time in the 1980s there was a fundamental or paradigm change in molecular biology research with discoveries in DNA sequencing and other analytical and physical techniques for studying macromolecules and cells. Since that time biotechnological research has expanded the traditional fermentation industries to efficient production of industrial and other enzymes and specialty chemicals.
View Article and Find Full Text PDFThe objective was to study folate production of yeast strains, bacteria isolated from oat bran, and selected lactic acid bacteria as well as one propionibacterium in oat and barley based models. Simultaneously, we aimed at sustaining the stability of viscosity, representing the physicochemical state of beta-glucan. Total folate contents were determined microbiologically and vitamers for selected samples by UHPLC.
View Article and Find Full Text PDFMolecular mechanisms leading to glutathione (GSH) over-accumulation in a Saccharomyces cerevisiae strain produced by UV irradiation-induced random mutagenesis were studied. The mutant accumulated GSH but also cysteine and γ-glutamylcysteine in concentrations that were several fold higher than in its wild-type parent strain under all studied cultivation conditions (chemostat, fed-batch, and turbidostat). Transcript analyses along with shotgun proteome quantification indicated a difference in the expression of a number of genes and proteins, the most pronounced of which were several fold higher expression of CYS3, but also that of GSH1 and its transcriptional activator YAP1.
View Article and Find Full Text PDFTwenty bacteria isolated from three commercial oat bran products were tested for their folate production capability. The bacteria as well as some reference organisms were grown until early stationary phase on a rich medium (YPD), and the amount of total folate in the separated cell mass and the culture medium (supernatant) was determined by microbiological assay. Folate vitamer distribution was determined for eight bacteria including one isolated from rye flakes.
View Article and Find Full Text PDFThe aim of this research was to identify endogenous bacteria in commercial oat bran and rye flake products in order to study their folate production capability while maintaining the soluble dietary fibre components in physiologically active, unhydrolyzed form. Fourty-two bacteria were isolated from three different oat bran products and 26 bacteria from one rye flake consumer product. The bacteria were tentatively identified by sequence analysis of the 16S rRNA genes.
View Article and Find Full Text PDFInt J Food Microbiol
February 2006
Fermentation of rye dough is often accompanied with an increase in folate content. In this study, three sourdough yeasts, Candida milleri CBS 8195, Saccharomyces cerevisiae TS 146, and Torulaspora delbrueckii TS 207; a control, baker's yeast S. cerevisiae ALKO 743; and four Lactobacillus spp.
View Article and Find Full Text PDFWe have cloned by complementation in Saccharomyces cerevisiae and sequenced a LEU2 gene from the sour dough yeast Candida milleri CBS 8195 and studied its chromosomal location. The LEU2 coding sequence was 1092 nt long encoding a putative beta-isopropylmalate dehydrogenase protein of 363 amino acids. The nucleotide sequence in the coding region had 71.
View Article and Find Full Text PDFAppl Environ Microbiol
January 1988
Molasses is widely used as a substrate for commercial yeast production. The complete hydrolysis of raffinose, which is present in beet molasses, by Saccharomyces strains requires the secretion of alpha-galactosidase, in addition to the secretion of invertase. Raffinose is not completely utilized by commercially available yeast strains used for baking, which are Mel.
View Article and Find Full Text PDF