A wide variety of nitrogen-containing compounds are present in the environment, which contributes to air pollution and new particle formation, for example. These eventually affect human health and the climate. With all this consideration, there is a growing interest in the development of efficient and reliable methods to determine these compounds in the atmosphere.
View Article and Find Full Text PDFOur second generation air sampling drone system, allowing the simultaneous use of four solid phase microextraction (SPME) Arrow and four in-tube extraction (ITEX) units, was employed for collection of atmospheric air samples at different spatial and temporal dimensions. SPME Arrow coated with two types of materials and ITEX with 10% polyacrylonitrile as sorbent were used to give a more comprehensive chemical characterization of the collected air samples. Before field sampling, miniaturized samplers went through quality control and assurance in terms of reproducibility (RSD ≤14.
View Article and Find Full Text PDFCantilever-enhanced photoacoustic spectroscopy coupled with gas chromatography is used to quantitatively analyze a mixture of alcohols in a quasi-online manner. A full identification and quantification of all analytes are achieved based on their spectral fingerprints using a widely tunable continuous-wave laser as a light source. This can be done even in the case of interfering column/septum bleed or simultaneously eluted peaks.
View Article and Find Full Text PDFAn automated on-line isolation and fractionation system including controlling software was developed for selected nanosized biomacromolecules from human plasma by on-line coupled immunoaffinity chromatography-asymmetric flow field-flow fractionation (IAC-AsFlFFF). The on-line system was versatile, only different monoclonal antibodies, anti-apolipoprotein B-100, anti-CD9, or anti-CD61, were immobilized on monolithic disk columns for isolation of lipoproteins and extracellular vesicles (EVs). The platelet-derived CD61-positive EVs and CD9-positive EVs, isolated by IAC, were further fractionated by AsFlFFF to their size-based subpopulations (e.
View Article and Find Full Text PDFToday, wide variety of adsorbents have been developed for sample pretreatment to concentrate and separate harmful substances. However, only a few solid phase microextraction Arrow adsorbents are commercially available. In this study, we developed a new solid phase microextraction Arrow coating, in which nanosheets layered double hydroxides and poly(vinylpyrrolidone) were utilized as the extraction phase and poly(vinyl chloride) as the adhesive.
View Article and Find Full Text PDFComprehensive and time-dependent information (e.g., chemical composition, concentration) of volatile organic compounds (VOCs) in atmospheric, indoor, and breath air is essential to understand the fundamental science of the atmosphere, air quality, and diseases diagnostic.
View Article and Find Full Text PDFThe applicability of an aerial drone as a carrier for new passive and active miniaturized air sampling systems, including solid phase microextration Arrow (SPME Arrow) and in-tube extraction (ITEX), was studied in this research. Thermal desorption, gas chromatography and mass spectrometry were used for the determination of volatile organic compounds (VOCs) collected by the sampling systems. The direct comparison of the profiles of VOCs, simultaneously sampled in air by SPME Arrow system including four different coatings, allowed the elucidation of their adsorption selectivity.
View Article and Find Full Text PDFNew chemical vapor reaction (CVR) and atomic layer deposition (ALD)-conversion methods were utilized for preparation of metal organic frameworks (MOFs) coatings of solid phase microextraction (SPME) Arrow for the first time. With simple, easy and convenient one-step reaction or conversion, four MOF coatings were made by suspend ALD iron oxide (FeO) film or aluminum oxide (AlO) film above terephthalic acid (HBDC) or trimesic acid (HBTC) vapor. UIO-66 coating was made by zirconium (Zr)-BDC film in acetic acid vapor.
View Article and Find Full Text PDFA theoretical and experimental study of continuous two-dimensional thermal field-flow fractionation (2D-ThFFF) is presented. Separation takes place in radial flow between two closely spaced discs, one of which is heated and the other cooled in order to maintain a temperature gradient across the channel. The cooled disc, which serves as the accumulation wall, is rotated relative to the other to create a shear component to the fluid flow.
View Article and Find Full Text PDFDistearoylphosphatidylcholine (DSPC)/cholesterol/distearoylphosphatidylethanolamine (DSPE)-polyethylene glycol 5000 [PEG(5000)] lipid disks, mimicking biological membranes, were used as pseudostationary phase in partial filling electrokinetic capillary chromatography (EKC) to study interactions between pharmaceuticals and lipid disks. Capillaries were coated either noncovalently with a poly(1-vinylpyrrolidone)-based copolymer or covalently with polyacrylamide to mask the negative charges of the fused-silica capillary wall and to minimize interactions between positively charged pharmaceuticals and capillary wall. Although the noncovalent copolymer coating method was faster, better stability of the covalent polyacrylamide coating at physiological pH 7.
View Article and Find Full Text PDFThe use of asymmetrical flow field-flow fractionation (AsFlFFF) in the study of heat-induced aggregation of proteins is demonstrated with bovine serum albumin (BSA) as a model analyte. The hydrodynamic diameter (d(h)), the molar mass of heat-induced aggregates, and the radius of gyration (R(g)) were calculated in order to get more detailed understanding of the conformational changes of BSA upon heating. The hydrodynamic diameter of native BSA at ambient temperature was approximately 7 nm.
View Article and Find Full Text PDFThis study demonstrates how positive ion atmospheric pressure photoionization-ion mobility spectrometry-mass spectrometry (APPI-IMS-MS) can be used to produce different ionic forms of an analyte and how these can be separated. When hexane:toluene (9:1) is used as a solvent, 2,6-di-tert-butylpyridine (2,6-DtBPyr) and 2,6-di-tert-4-methylpyridine (2,6-DtB-4-MPyr) efficiently produce radical cations [M](+*) and protonated [M + H](+) molecules, whereas, when the sample solvent is hexane, protonated molecules are mainly formed. Interestingly, radical cations drift slower in the drift tube than the protonated molecules.
View Article and Find Full Text PDFUser-friendly and easy-to-use laboratory-written programs for visualisation and interpretation of comprehensive two-dimensional chromatographic data were developed. The programs that are not tied to any particular commercial instrument, and data obtained either by comprehensive two-dimensional liquid (LC x LC) or gas (GC x GC) chromatography can be analysed. Operations of the programs allow visualisation of 2D and 3D plots, comparison of two 2D plots at a time, as well as determination of retention times and peak heights and volumes.
View Article and Find Full Text PDFA previously constructed semi-rotating cryogenic modulator was modified for comprehensive two-dimensional gas chromatography (GCxGC). The retention time repeatability was improved by replacing the modulator control program unit with a new system. Peak widths obtained with the modified modulator were comparable with those obtained with the previous modulator and other modulator types.
View Article and Find Full Text PDFElectrophoresis
October 2007
ACN is an extremely poor hydrogen bond donor and therefore the anions dissolved in it are solvated mainly by other hydrogen bond donors (e.g. uncharged acids) possibly present in the solution.
View Article and Find Full Text PDFComprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC x GC-TOF-MS) was applied in the identification of organic compounds in atmospheric aerosols from coniferous forest. The samples were collected at Hyytiälä, Finland, as part of the QUEST campaign, in Spring 2003. Manual and automated search procedures were compared in the identification.
View Article and Find Full Text PDFAsymmetrical flow field-flow fractionation (AsFlFFF), a technique that provides direct measurement of particle size and diffusion coefficient, is converted into miniaturized scale. In comparison with conventional AsFlFFF, the separation of proteins in miniaturized AsFlFFF is achieved within shorter time periods, with smaller sample amounts, and with lower mobile phase consumption. Minimization of the overloading and optimization of the separation efficiency are prerequisites to good results.
View Article and Find Full Text PDFA novel method utilising comprehensive two-dimensional liquid chromatography interfaced to electrospray ionisation time-of-flight mass spectrometry was developed for the determination of organic acids in atmospheric aerosols. The system was applied to the analysis of methanolic extracts of filters from a high volume sampler. The enhanced separation power of two-dimensional separation was demonstrated in the analysis of both rural and urban samples.
View Article and Find Full Text PDFBand broadening at high electric field strengths in capillary electrophoresis (CE), especially in wide capillaries, is often attributed to radial temperature gradients in the interior of the capillary caused by Joule heating. In some cases, however, a major cause of the lower separation efficiency could be the abrupt application of high electric field strength. We show that, with ethanol as background electrolyte solvent, initial abrupt voltage application introduces band broadening, which is especially pronounced in wider capillaries at high electric field and ionic strengths.
View Article and Find Full Text PDFAsymmetrical flow field-flow fractionation (AsFIFFF) was used to determine the hydrodynamic particle sizes, molar masses, and phase transition behaviour of various poly(N-isopropylacrylamide) (PNIPAM) samples synthesised by reversible addition--fragmentation chain transfer (RAFT) and conventional free radical polymerisation processes. The results were compared with corresponding data obtained by dynamic light scattering (DLS) and size exclusion chromatography (SEC). Agreement between the three methods was good except at higher molar masses, where the molar mass averages obtained by SEC were much lower than those obtained by AsFIFFF and light scattering.
View Article and Find Full Text PDFAnionic liposomes can be coated on fused-silica capillaries for electrophoresis in the presence of N-(hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) (HEPES) as background electrolyte (BGE) solution. In this work, the interaction of various compounds with zwitterionic and anionic phospholipid coatings was studied with HEPES at pH 7.4 as BGE solution.
View Article and Find Full Text PDFLC-MS methods with use of ion-trap and time-of-flight mass spectrometers were developed for the determination of organic acids in aerosol samples collected by a high-volume sampler in a Finnish coniferous forest. Comparison was made of the composition of samples collected during atmospheric formation of new aerosol particles and on days when this formation did not occur. A dynamic sonication-assisted solvent extraction system was developed for fast and quantitative extraction of the filter samples.
View Article and Find Full Text PDFInstrumental techniques to analyse macromolecular and particulate materials have undergone rapid development in response to the need for high resolution, precise identification and characterization, and enrichment and collection for further analysis. Continuous two-dimensional field-flow fractionation (2D-FFF), which is described in this article, is a novel technique for separation and collection of macromolecules and particles. 2D-FFF is based on the conventional field-flow fractionation principle but with carrier flow in two-dimensions.
View Article and Find Full Text PDFComprehensive two-dimensional gas chromatography utilising a semi-rotating cryogenic modulator was applied to the analysis of dietary milk derived fatty acids. Four column combinations were tested: two polar-nonpolar and two different nonpolarpolar column combinations. Best results were obtained with a nonpolar-polar column set, with narrow-bore (50 microm ID) Carbowax column as the second column.
View Article and Find Full Text PDFNonaqueous capillary electrophoretic separations were performed under high electric field strengths (up to 2000 Vcm(-1)) in ethanolic background electrolyte solution and the contributions of different band broadening effects to plate height were evaluated. Under optimum conditions, increasing the field strength will provide faster separations and increased separation efficiency. Decrease in the separation efficiency at high field strengths was, however, observed in a previous study and now in the present paper an attempt is made to quantify various band broadening effects by applying a plate height model, which included the contributions of the injection plug length, diffusion, electromigration dispersion, Joule heating, analyte adsorption to the capillary wall, and detector slit aperture length.
View Article and Find Full Text PDF