Publications by authors named "Matti Javanainen"

Cellular membranes are composed of lipids typically organized in a double-leaflet structure. Interactions between these two leaflets - often referred to as interleaflet coupling - play a crucial role in various cellular processes. Despite extensive study, the mechanisms governing such interactions remain incompletely understood.

View Article and Find Full Text PDF

Calmodulin (CaM) is a ubiquitous calcium-sensitive messenger in eukaryotic cells. It was previously shown that CaM possesses an affinity for diverse lipid moieties, including those found on CaM-binding proteins. These facts, together with our observation that CaM accumulates in membrane-rich protrusions of HeLa cells upon increased cytosolic calcium, motivated us to perform a systematic search for unmediated CaM interactions with model lipid membranes mimicking the cytosolic leaflet of plasma membranes.

View Article and Find Full Text PDF

prosECCo75 is an optimized force field effectively incorporating electronic polarization via charge scaling. It aims to enhance the accuracy of nominally nonpolarizable molecular dynamics simulations for interactions in biologically relevant systems involving water, ions, proteins, lipids, and saccharides. Recognizing the inherent limitations of nonpolarizable force fields in precisely modeling electrostatic interactions essential for various biological processes, we mitigate these shortcomings by accounting for electronic polarizability in a physically rigorous mean-field way that does not add to computational costs.

View Article and Find Full Text PDF
Article Synopsis
  • Hydrophobic mismatch between lipid membranes and transmembrane proteins affects their positioning and function within the membrane.
  • Previous research identified mechanisms for how these proteins adapt to mismatches, but understanding the energy dynamics of their sorting has been challenging.
  • This study introduces a molecular dynamics simulation method that analyzes how peptides adjust their orientation and position in response to membrane thickness variations, revealing valuable insights into the energetics of these processes.
View Article and Find Full Text PDF
Article Synopsis
  • Curved cellular membranes are crucial for biological functions, but studying their dynamics is complicated due to curvature effects on diffusion.
  • Molecular simulations are needed for better analysis, and the new tool CurD facilitates this by providing faster computations of lipid diffusion on curved membranes.
  • Research using CurD shows that mean curvature significantly influences lipid movement, while Gaussian curvature has a minor effect, highlighting the importance of lipid headgroup packing.
View Article and Find Full Text PDF

Over the past decade, there has been a significant rise in the use of vaping devices, particularly among adolescents, raising concerns for effects on respiratory health. Pressingly, many recent vaping-related lung injuries are unexplained by current knowledge, and the overall implications of vaping for respiratory health are poorly understood. This study investigates the effect of hydrophobic vaping liquid chemicals on the pulmonary surfactant biophysical function.

View Article and Find Full Text PDF

Protein translocation across the endoplasmic reticulum (ER) membrane is an essential step during protein entry into the secretory pathway. The conserved Sec61 protein-conducting channel facilitates polypeptide translocation and coordinates cotranslational polypeptide-processing events. In cells, the majority of Sec61 is stably associated with a heterotetrameric membrane protein complex, the translocon-associated protein complex (TRAP), yet the mechanism by which TRAP assists in polypeptide translocation remains unknown.

View Article and Find Full Text PDF

We employed all-atom MD simulations to investigate the impact of palmitoylation on the PAG transmembrane peptide within various lipid environments, including the less explored boundary region separating lipid-ordered (Lo) and lipid-disordered (Ld) membrane phases. We found that palmitoylation of the peptide reduces its impact on membrane thickness, particularly within the Lo and boundary environments. Despite their hydrophobic nature, the palmitoyl chains on the peptide did not significantly affect the hydration of the surrounding membrane.

View Article and Find Full Text PDF

The routinely employed periodic boundary conditions complicate molecular simulations of physiologically relevant asymmetric lipid membranes together with their distinct solvent environments. Therefore, separating the extracellular fluid from its cytosolic counterpart has often been performed using a costly double-bilayer setup. Here, we demonstrate that the lipid membrane and solvent asymmetry can be efficiently modeled with a single lipid bilayer by applying an inverted flat-bottom potential to ions and other solute molecules, thereby restraining them to only interact with the relevant leaflet.

View Article and Find Full Text PDF

Cholesterol is a central building block in biomembranes, where it induces orientational order, slows diffusion, renders the membrane stiffer, and drives domain formation. Molecular dynamics (MD) simulations have played a crucial role in resolving these effects at the molecular level; yet, it has recently become evident that different MD force fields predict quantitatively different behavior. Although easily neglected, identifying such limitations is increasingly important as the field rapidly progresses toward simulations of complex membranes mimicking the in vivo conditions: pertinent multicomponent simulations must capture accurately the interactions between their fundamental building blocks, such as phospholipids and cholesterol.

View Article and Find Full Text PDF

Preventing the biogenesis of disease-relevant proteins is an attractive therapeutic strategy, but attempts to target essential protein biogenesis factors have been hampered by excessive toxicity. Here we describe KZR-8445, a cyclic depsipeptide that targets the Sec61 translocon and selectively disrupts secretory and membrane protein biogenesis in a signal peptide-dependent manner. KZR-8445 potently inhibits the secretion of pro-inflammatory cytokines in primary immune cells and is highly efficacious in a mouse model of rheumatoid arthritis.

View Article and Find Full Text PDF

The APOE4 variant of apolipoprotein E (apoE) is the most prevalent genetic risk allele associated with late-onset Alzheimer's disease (AD). ApoE interacts with complement regulator factor H (FH), but the role of this interaction in AD pathogenesis is unknown. Here we elucidate the mechanism by which isoform-specific binding of apoE to FH alters Aβ1-42-mediated neurotoxicity and clearance.

View Article and Find Full Text PDF

Shear viscosity of lipid membranes dictates how fast lipids, proteins, and other membrane constituents travel along the membrane and rotate around their principal axis, thus governing the rates of diffusion-limited reactions taking place at membranes. In this framework, the heterogeneity of biomembranes indicates that cells could regulate these rates via varying local viscosities. Unfortunately, experiments to probe membrane viscosity under various conditions are tedious and error prone.

View Article and Find Full Text PDF

The lining of the alveoli is covered by pulmonary surfactant, a complex mixture of surface-active lipids and proteins that enables efficient gas exchange between inhaled air and the circulation. Despite decades of advancements in the study of the pulmonary surfactant, the molecular scale behavior of the surfactant and the inherent role of the number of different lipids and proteins in surfactant behavior are not fully understood. The most important proteins in this complex system are the surfactant proteins SP-B and SP-C.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used advanced microscopy and simulations to examine how lipid diffusion and sorting change in membranes with different properties, particularly when mimicking natural structures like viral envelopes.
  • * Findings show that curved membranes can promote lipid sorting and faster movement even at high temperatures, suggesting that nanoscale curvature can affect membrane characteristics and is crucial for understanding membrane functions.
View Article and Find Full Text PDF

Adsorption of arginine-rich positively charged peptides onto neutral zwitterionic phosphocholine (PC) bilayers is a key step in the translocation of those potent cell-penetrating peptides into the cell interior. In the past, we have shown both theoretically and experimentally that polyarginines adsorb to the neutral PC-supported lipid bilayers in contrast to polylysines. However, comparing our results with previous studies showed that the results often do not match even at the qualitative level.

View Article and Find Full Text PDF

Lipid monolayers provide our lungs and eyes their functionality and serve as proxy systems in biomembrane research. Therefore, lipid monolayers have been studied intensively including using molecular dynamics simulations, which are able to probe their lateral structure and interactions with, e.g.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the coexistence of liquid ordered (L) and liquid disordered (L) lipid phases in vesicles, which are used to simulate the complexity of biological membranes and their associated rafts.
  • It highlights that raft-associated proteins tend to only associate with the L phase, suggesting that this is due to the different microscopic structures at varying temperatures.
  • The findings indicate that temperature influences lipid structure, which affects protein solvation and necessitates careful consideration of these differences when modeling cellular membranes in synthetic systems.
View Article and Find Full Text PDF

Interest in lipid interactions with proteins and other biomolecules is emerging not only in fundamental biochemistry but also in the field of nanobiotechnology where lipids are commonly used, for example, in carriers of mRNA vaccines. The outward-facing components of cellular membranes and lipid nanoparticles, the lipid headgroups, regulate membrane interactions with approaching substances, such as proteins, drugs, RNA, or viruses. Because lipid headgroup conformational ensembles have not been experimentally determined in physiologically relevant conditions, an essential question about their interactions with other biomolecules remains unanswered: Do headgroups exchange between a few rigid structures, or fluctuate freely across a practically continuous spectrum of conformations? Here, we combine solid-state NMR experiments and molecular dynamics simulations from the NMRlipids Project to resolve the conformational ensembles of headgroups of four key lipid types in various biologically relevant conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Molecular dynamics (MD) simulations, especially using coarse-grained (CG) models, are crucial for studying phase separation in lipid bilayers, allowing researchers to observe behavior in liquid-ordered and liquid-disordered states.
  • The study reveals that using standard Martini parameters in CG MD simulations can lead to artificially large temperature differences between molecules due to issues with the LINCS algorithm, particularly when highly constrained molecules like cholesterol are present.
  • To address these temperature discrepancies and ensure accurate membrane properties, the study suggests specific LINCS settings and time steps for simulations involving cholesterol, and proposes coupling lipids to a temperature bath as a practical alternative for more demanding simulations.
View Article and Find Full Text PDF
Article Synopsis
  • Single-particle tracking (SPT) experiments reveal important details about lipid and protein behavior in biomembranes, showing deviations from ideal Brownian motion due to factors like confinement effects and anomalous diffusion.
  • Anisotropic diffusion, which refers to directional variations in the motion of particles, is highlighted as a new area of interest for understanding membrane structure, though current theoretical methods to analyze it are lacking.
  • This study introduces a computational approach to measure anisotropic diffusion from molecular dynamics simulations and compares these findings with SPT results, demonstrating that anisotropy can last until a certain time period before isotropic diffusion occurs and showing how membrane structure influences particle motion.
View Article and Find Full Text PDF

The coarse-grained Martini force field is widely used in biomolecular simulations. Here we present the refined model, Martini 3 ( http://cgmartini.nl ), with an improved interaction balance, new bead types and expanded ability to include specific interactions representing, for example, hydrogen bonding and electronic polarizability.

View Article and Find Full Text PDF

Pulmonary surfactant is a complex mixture of lipids and proteins lining the interior of the alveoli, and constitutes the first barrier to both oxygen and pathogens as they progress toward blood circulation. Despite decades of study, the behavior of the pulmonary surfactant at the molecular scale is poorly understood, which hinders the development of effective surfactant replacement therapies, useful in the treatment of several lung-related diseases. In this work, we combined all-atom molecular dynamics simulations, Langmuir trough measurements, and AFM imaging to study synthetic four-component lipid monolayers designed to model protein-free pulmonary surfactant.

View Article and Find Full Text PDF

Ions at the two sides of the plasma membrane maintain the transmembrane potential, participate in signaling, and affect the properties of the membrane itself. The extracellular leaflet is particularly enriched in phosphatidylcholine lipids and under the influence of Na, Ca, and Cl ions. In this work, we combined molecular dynamics simulations performed using state-of-the-art models with vibrational sum frequency generation (VSFG) spectroscopy to study the effects of these key ions on the structure of dipalmitoylphosphatidylcholine.

View Article and Find Full Text PDF

The Bcl-2 protein family comprises both pro- and antiapoptotic members that control the permeabilization of the mitochondrial outer membrane, a crucial step in the modulation of apoptosis. Recent research has demonstrated that the carboxyl-terminal transmembrane domain (TMD) of some Bcl-2 protein family members can modulate apoptosis; however, the transmembrane interactome of the antiapoptotic protein Mcl-1 remains largely unexplored. Here, we demonstrate that the Mcl-1 TMD forms homooligomers in the mitochondrial membrane, competes with full-length Mcl-1 protein with regards to its antiapoptotic function, and induces cell death in a Bok-dependent manner.

View Article and Find Full Text PDF