Publications by authors named "Matti Hoch"

The placenta remains the key organ to pregnancy complications, such as preeclampsia, contrarily the pathophysiology underlying the placental dysfunctions remains elusive. Here, we present our Disease Map "NaviCenta", which is an online resource based on the interactions between tissues, cellular compartments, and molecules that mediate disease-related processes in the placenta. We built cellular and molecular interaction networks based upon manual curation and annotation of publicly available information in the scientific literature, pathways resources, and Omics data.

View Article and Find Full Text PDF

Background: Modifying the acute inflammatory response has wide clinical benefits. Current options include non-steroidal anti-inflammatory drugs (NSAIDs) and therapies that may resolve inflammation. Acute inflammation involves multiple cell types and various processes.

View Article and Find Full Text PDF

Lipid mediators are important regulators in inflammatory responses, and their biosynthetic pathways are targeted by commonly used anti-inflammatory drugs. Switching from pro-inflammatory lipid mediators (PIMs) to specialized pro-resolving (SPMs) is a critical step toward acute inflammation resolution and preventing chronic inflammation. Although the biosynthetic pathways and enzymes for PIMs and SPMs have now been largely identified, the actual transcriptional profiles underlying the immune cell type-specific transcriptional profiles of these mediators are still unknown.

View Article and Find Full Text PDF

Malnutrition (MN) is a common primary or secondary complication in gastrointestinal diseases. The patient's nutritional status also influences muscle mass and function, which can be impaired up to the degree of sarcopenia. The molecular interactions in diseases leading to sarcopenia are complex and multifaceted, affecting muscle physiology, the intestine (nutrition), and the liver at different levels.

View Article and Find Full Text PDF

Complex diseases are inherently multifaceted, and the associated data are often heterogeneous, making linking interactions across genes, metabolites, RNA, proteins, cellular functions, and clinically relevant phenotypes a high-priority challenge. Disease maps have emerged as knowledge bases that capture molecular interactions, disease-related processes, and disease phenotypes with standardized representations in large-scale molecular interaction maps. Various tools are available for disease map analysis, but an intuitive solution to perform in silico experiments on the maps in a wide range of contexts and analyze high-dimensional data is currently missing.

View Article and Find Full Text PDF

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources.

View Article and Find Full Text PDF

Introduction: Cold atmospheric plasma (CAP) has positive effects on wound healing and antimicrobial properties. However, an ongoing challenge is the development of specific modes of application for different clinical indications.

Objectives: We investigated in a prospective pilot study the response and tolerability of a newly developed CAP wound dressing for the acute healing of split skin graft donor sites compared to conventional therapy.

View Article and Find Full Text PDF

Acute inflammation is a protective reaction by the immune system in response to invading pathogens or tissue damage. Ideally, the response should be localized, self-limited, and returning to homeostasis. If not resolved, acute inflammation can result in organ pathologies leading to chronic inflammatory phenotypes.

View Article and Find Full Text PDF

The Publisher regrets that this article is an accidental duplication of an article that has already been published, https://doi.org/10.1016/j.

View Article and Find Full Text PDF

Adult cardiomyocytes (CMs) possess a highly restricted intrinsic regenerative potential - a major barrier to the effective treatment of a range of chronic degenerative cardiac disorders characterized by cellular loss and/or irreversible dysfunction and which underlies the majority of deaths in developed countries. Both stem cell programming and direct cell reprogramming hold promise as novel, potentially curative approaches to address this therapeutic challenge. The advent of induced pluripotent stem cells (iPSCs) has introduced a second pluripotent stem cell source besides embryonic stem cells (ESCs), enabling even autologous cardiomyocyte production.

View Article and Find Full Text PDF