Purpose: T2-weighted DANTE-SPACE (Delay Alternating with Nutation for Tailored Excitation - Sampling Perfection with Application optimized Contrasts using different flip angle Evolution) sequences facilitate non-invasive intracranial vessel wall imaging at 7T through simultaneous suppression of blood and CSF. However, the achieved vessel wall delineation depends closely on the selected sequence parameters, and little information is available about the performance of the sequence using more widely available 3T MRI. Therefore, in this paper a comprehensive DANTE-SPACE simulation framework is used for the optimization and quantitative comparison of T2-weighted DANTE-SPACE at both 7T and 3T.
View Article and Find Full Text PDFPurpose: To acquire accurate volumetric multi-channel maps in under 14 s whole-brain or 23 heartbeats whole-heart for parallel transmit (pTx) applications at 7 T.
Theory And Methods: We evaluate the combination of three recently proposed techniques. The acquisition of multi-channel transmit array maps is accelerated using transmit low rank (TxLR) with absolute mapping (Sandwich) acquired in a time-interleaved acquisition of modes (B1TIAMO) fashion.
Purpose: The delay alternating with nutation for tailored excitation (DANTE)-sampling perfection with application-optimized contrasts (SPACE) sequence facilitates 3D intracranial vessel wall imaging with simultaneous suppression of blood and CSF. However, the achieved image contrast depends closely on the selected sequence parameters, and the clinical use of the sequence is limited in vivo by observed signal variations in the vessel wall, CSF, and blood. This paper introduces a comprehensive DANTE-SPACE simulation framework, with the aim of providing a better understanding of the underlying contrast mechanisms and facilitating improved parameter selection and contrast optimization.
View Article and Find Full Text PDFPurpose: Neurovascular MRI suffers from a rapid drop in B into the neck when using transmit head coils at 7 T. One solution to improving B magnitude in the major feeding arteries in the neck is to use custom RF shims on parallel-transmit head coils. However, calculating such shims requires robust multichannel B maps in both the head and the neck, which is challenging due to low RF penetration into the neck, limited dynamic range of multichannel B mapping techniques, and B sensitivity.
View Article and Find Full Text PDFBackground: Accurate assessment of plaque accumulation near the carotid bifurcation is important for the effective prevention and treatment of stroke. However, vessel and plaque delineation using MRI can be limited by low contrast-to-noise ratio (CNR) and long acquisition times. In this work, a 10-channel phased-array receive coil design for bilateral imaging of the carotid bifurcation using 3T MRI is proposed.
View Article and Find Full Text PDFPurpose: To develop an accelerated 3D intracranial time-of-flight (TOF) magnetic resonance angiography (MRA) sequence with wave-encoding (referred to as 3D wave-TOF) and to evaluate two variants: wave-controlled aliasing in parallel imaging (CAIPI) and compressed-sensing wave (CS-wave).
Methods: A wave-TOF sequence was implemented on a 3 T clinical scanner. Wave-encoded and Cartesian k-space datasets from six healthy volunteers were retrospectively and prospectively undersampled with 2D-CAIPI sampling and variable-density Poisson disk sampling.
Purpose: 3D time-of-flight MRA can accurately visualize the intracranial vasculature but is limited by long acquisition times. Compressed sensing reconstruction can be used to substantially accelerate acquisitions. The quality of those reconstructions depends on the undersampling patterns used.
View Article and Find Full Text PDFPurpose: Safety limits for the permitted specific absorption rate (SAR) place restrictions on pulse sequence design, especially at ultrahigh fields (≥ 7 tesla). Due to intersubject variability, the SAR is usually conservatively estimated based on standard human models that include an applied safety margin to ensure safe operation. One approach to reducing the restrictions is to create more accurate subject-specific models from their segmented MR images.
View Article and Find Full Text PDF