Publications by authors named "Matthijs A Kol"

Toxoplasma gondii is an obligate, intracellular apicomplexan protozoan parasite of both humans and animals that can cause fetal damage and abortion and severe disease in the immunosuppressed. Sphingolipids have indispensable functions as signaling molecules and are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Ceramide is the precursor for all sphingolipids, and here we report the identification, localization and analyses of the Toxoplasma ceramide synthases TgCerS1 and TgCerS2.

View Article and Find Full Text PDF

Phospholipid -methyltransferases (PLMTs) synthesize phosphatidylcholine by methylating phosphatidylethanolamine using -adenosylmethionine as a methyl donor. Eukaryotic PLMTs are integral membrane enzymes located in the endoplasmic reticulum (ER). Recently Opi3, a PLMT of the yeast was proposed to perform in catalysis, while localized in the ER, Opi3 would methylate lipid substrates located in the plasma membrane at membrane contact sites.

View Article and Find Full Text PDF

The fate of exogenous short-chain analogues of phosphatidylethanolamine and phosphatidylserine was studied in a deep-rough derivative of E. coli mutant strain AD93 that cannot synthesize phosphatidylethanolamine de novo. Using mass spectrometry, it was shown that dicaproyl(di 6:0)-phosphatidylethanolamine is extensively remodeled, eventually adopting the phosphatidylethanolamine species profile of the parental wild-type strain of AD93.

View Article and Find Full Text PDF

Biogenic membranes contain the enzymes that synthesize the cell's membrane lipids, of which the phospholipids are the most widespread throughout nature. Being synthesized at and inserted into the cytoplasmic leaflet of biogenic membranes, the phospholipids must migrate to the opposite leaflet to ensure balanced growth of the membrane. In this review, the current knowledge of transbilayer movement of phospholipids in biogenic membranes is summarized and the available data are compared to what is known about lipid translocation in other membranes.

View Article and Find Full Text PDF

The mechanism by which phospholipids are transported across biogenic membranes, such as the bacterial cytoplasmic membrane, is unknown. We hypothesized that this process is mediated by the presence of the membrane-spanning segments of inner membrane proteins, rather than by dedicated flippases. In support of the hypothesis, it was demonstrated that transmembrane alpha-helical peptides, mimicking the membrane-spanning segments, mediate flop of 2-6-(7-nitro-2,1,3-benzoxadiazol-4-yl) aminocaproyl (C6-NBD)-phospholipids (Kol, M.

View Article and Find Full Text PDF

Since phospholipid synthesis is generally confined to one leaflet of a membrane, membrane growth requires phospholipid translocation (flip-flop). It is generally assumed that this process is protein-mediated; however, the mechanism of flip-flop remains elusive. Previously, we have demonstrated flop of 2-[6-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]caproyl] (C6NBD) phospholipids, induced by the presence of membrane-spanning peptides in vesicles composed of an Escherichia coli phospholipid extract, supporting the hypothesis that the presence of transmembrane stretches of proteins in the bilayer is sufficient to allow phospholipid flip-flop in the inner membrane of E.

View Article and Find Full Text PDF

Phospholipids are synthesized in biogenic membranes, but only on one leaflet of the bilayer. To support balanced growth of the membrane, phospholipid translocation, or flip-flop, has to occur. Though consensus has been reached that flip-flop is most likely mediated by (a) membrane-associated protein(s), a dedicated flippase has not been identified yet in any biogenic membrane.

View Article and Find Full Text PDF