In the field of nanoconfined fluids, there are striking examples of deformation/transport coupling in which mechanical solicitation of the confining solid and dynamics of the confined fluid impact each other. While this intriguing behavior can be harnessed for applications (e.g.
View Article and Find Full Text PDFFreezing of water under nanoconfinement exhibits physical peculiarities with respect to the bulk water. However, experimental observations are extremely challenging at this scale, which limits our understanding of the effect of confinement on water properties upon freezing. In this study, we use molecular dynamic simulations to investigate how confinement affects the kinetics of growth of ice and the thermodynamic equilibrium of ice-liquid coexistence.
View Article and Find Full Text PDFSalt solubility is generally determined under isotropic stress conditions. Yet, in the context of salt weathering of porous media, mechanical constraints on the in-pore growth of salt crystals are likely to be orientation-dependent, resulting in an anisotropic stress state on the crystal. In this paper, we determine by molecular simulation the solubility of NaCl in water when the crystal is subjected to anisotropic stress.
View Article and Find Full Text PDFWhile much progress has been made on the modeling of swelling clays at the molecular scale in recent decades, up-scaling to the macroscopic scale remains a challenge, in particular because the mesoscopic scale (between a few nanometers and a few hundreds of nanometers) is still poorly understood. In this article, we propose a new 2D granular model of clay at the mesoscale. This model is adapted to the modeling of a dense clay matrix representing geomechanical conditions (up to pressures of 10-100 MPa).
View Article and Find Full Text PDFIn comparison to condensed matter, soft matter is subject to several interplaying effects (surface heterogeneities and swelling effect) that influence transport at the nanoscale. In consequence, transport in soft and compliant materials is coupled to adsorption and deformation phenomena. The permeance of the material, i.
View Article and Find Full Text PDFIn this paper, we study the drying of water-saturated porous polydimethylsiloxane (PDMS) elastomers with closed porosity in which the evaporation of water is possible only via the diffusion across PDMS. Starting from water/PDMS emulsions, we fabricate soft macroporous samples with different pore diameter distributions and average diameters ranging from 10 to 300 μm. In these materials, the drying may lead to either a collapsed state with low porosity or the cavitation and reopening of a fraction of the pores.
View Article and Find Full Text PDFProc Math Phys Eng Sci
December 2018
In this study, we propose an exhaustion model and an adapted work-hardening model to explain the long-term basic creep of concrete. In both models, the macroscopic creep strain originates from local microscopic relaxations. The two models differ in how the activation energies of those relaxations are distributed and evolve during the creep process.
View Article and Find Full Text PDFThe basic structural units of adsorbing microporous materials such as clays and cementitious materials are flexible nanolayers. The flexibility of these layers is reported to play a crucial role in the structuration of these materials, potentially affecting therefore the thermo-mechanical behavior of such materials. Adsorbed fluids are structured in a discrete number of layers within the space between the nanolayers in these materials.
View Article and Find Full Text PDFAdsorption plays a fundamental role in the behavior of clays. Because of the confinement between solid clay layers on the nanoscale, adsorbed water is structured in layers, which can occupy a specific volume. The transition between these states is intimately related to key features of clay thermo-hydro-mechanical behavior.
View Article and Find Full Text PDFThe Pickett effect is the phenomenon of creep enhancement during transient drying. It has been observed for many nanoporous solids, including concrete, wood and Kevlar. While the existing micromechanical models can partially explain this effect, they have yet to consider nanoscale dynamic effects of water in nanopores, which are believed to be of paramount importance.
View Article and Find Full Text PDFWe characterized experimentally the elastic and creep properties of thin self-standing clay films, and how their mechanical properties evolved with relative humidity and water content. The films were made of clay montmorillonite SWy-2, obtained by evaporation of a clay suspension. Three types of films were manufactured, which differed by their interlayer cation: sodium, calcium, or a mixture of sodium with calcium.
View Article and Find Full Text PDFWe measured the humidity-induced swelling of thin self-standing films of montmorillonite clay by a combination of environmental scanning electron microscopy (ESEM) and digital image correlation (DIC). The films were about 40 μm thick. They were prepared by depositing and evaporating a suspension of clay and peeling off the highly oriented deposits.
View Article and Find Full Text PDFCarbon dioxide injection in coal seams is known to improve the methane production of the coal seam, while ensuring a safe and long-term carbon sequestration. This improvement is due to the preferential adsorption of CO(2) in coal with respect to CH(4): an injection of CO(2) thus results in a desorption of CH(4). However, this preferential adsorption is also known to cause a differential swelling of coal, which results in a significant decrease in the reservoir permeability during the injection process.
View Article and Find Full Text PDFConcrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown.
View Article and Find Full Text PDF