Publications by authors named "Matthieu Soulie"

Excessive activation of the mineralocorticoid receptor (MR) is implicated in cardiovascular and renal disease. Decreasing MR activation with MR antagonists (MRA) is effective to slow chronic kidney disease (CKD) progression and its cardiovascular comorbidities in animal models and patients. The present study evaluates the effects of the MR modulator balcinrenone and the MRA eplerenone on kidney damage in a metabolic CKD mouse model combining nephron reduction and a 60% high-fat diet.

View Article and Find Full Text PDF

Background: The mineralocorticoid receptor plays a significant role in the development of chronic kidney disease (CKD) and associated cardiovascular complications. Classic steroidal mineralocorticoid receptor antagonists are a therapeutic option, but their use in the clinic is limited due to the associated risk of hyperkalemia in patients with CKD. Finerenone is a nonsteroidal mineralocorticoid receptor antagonist that has been recently investigated in 2 large phase III clinical trials (FIDELIO-DKD [Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease] and FIGARO-DKD [Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease]), showing reductions in kidney and cardiovascular outcomes.

View Article and Find Full Text PDF

Background: The expression of NGAL/lcn2 (neutrophil gelatinase-associated lipocalin) is directly modulated by mineralocorticoid receptor activation but its role in blood pressure control is unclear.

Methods: a potential relationship between NGAL plasma levels, systolic blood pressure and urinary Na excretion was assessed in the STANISLAS cohort. The specific role of NGAL/lcn2 in salt-sensitive hypertension was studied using lcn2-knockout mice (lcn2 KO) fed with low-Na diet (0Na).

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) and its associated cardiovascular morbidity represent a major complication in diabetic patients. Over the past two decades, several experimental studies have shown benefits of mineralocorticoid receptor (MR) antagonists on the cardiorenal outcomes in animal models of non-diabetic or diabetic kidney diseases. Here, we summarize the role of MR activation in promoting inflammatory and fibrotic mechanisms that contribute to DKD pathophysiology.

View Article and Find Full Text PDF

The mineralocorticoid receptor (MR) plays an important role in the development of chronic kidney disease (CKD) and associated cardiovascular complications. Antagonizing the overactivation of the MR with MR antagonists (MRA) is a therapeutic option, but their use in patients with CKD is limited due to the associated risk of hyperkalemia. Finerenone is a non-steroidal MRA associated with an improved benefit-risk profile in comparison to steroidal MRAs.

View Article and Find Full Text PDF

Myocardial infarction is the most common cause of death worldwide. An understanding of the alterations in protein pathways is needed in order to develop strategies that minimize myocardial damage. To identify the protein signature of cardiac ischemia/reperfusion (I/R) injury in rats, we combined, for the first time, protein matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and label-free proteomics on the same tissue section placed on a conductive slide.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates whether reducing heart rate (HRR) can counteract cardiovascular dysfunction that occurs during acute decompensated heart failure (ADHF) in a rat model.
  • Researchers induced ADHF through salt-loading and evaluated cardiac output, myocardial perfusion, and coronary relaxation at multiple time points after treatment with an I current inhibitor (S38844).
  • Results showed that HRR significantly improved cardiac function metrics compared to untreated ADHF, suggesting that HRR may help mitigate the negative effects of ADHF.
View Article and Find Full Text PDF

Introduction: Imeglimin, a glucose-lowering agent targeting mitochondrial bioenergetics, decreases reactive oxygen species (ROS) overproduction and improves glucose homeostasis. We investigated whether this is associated with protective effects on metabolic syndrome-related left ventricular (LV) and vascular dysfunctions.

Methods: We used Zucker rats to assess the effects on LV function, LV tissue perfusion, LV oxidative stress and vascular function induced by imeglimin administered orally for 9 or 90 days at a dose of 150 mg/kg twice daily.

View Article and Find Full Text PDF