IEEE Trans Pattern Anal Mach Intell
March 2016
Large image datasets such as ImageNet or open-ended photo websites like Flickr are revealing new challenges to image classification that were not apparent in smaller, fixed sets. In particular, the efficient handling of dynamically growing datasets, where not only the amount of training data but also the number of classes increases over time, is a relatively unexplored problem. In this challenging setting, we study how two variants of Random Forests (RF) perform under four strategies to incorporate new classes while avoiding to retrain the RFs from scratch.
View Article and Find Full Text PDF