Plastic pollution in the aquatic environment has been assessed for many years by ocean waste collection expeditions around the globe or by river sampling. While the total amount of plastic produced worldwide is well documented, the amount of plastic found in the ocean, the distribution of particles on its surface and its evolution over time are still the subject of much debate. In this article, we propose a general fragmentation model, postulating the existence of a critical size below which particle fragmentation becomes extremely unlikely.
View Article and Find Full Text PDFPurpose: Post prostatectomy PSA kinetics and General Grade Groups (GGG) are the strongest prognostic markers of biochemical recurrence (BCR) and prostate cancer (PCa)-specific mortality after radical prostatectomy. Despite having low-risk PCa, some patients will experience BCR, for some, clinically significant BCR. There is a need for an objective prognostic marker at the time of prostatectomy to improve risk stratification within this population.
View Article and Find Full Text PDFThis opinion paper offers a scientific view on the current debate of the place of biodegradable plastics as part of the solution to deal with the growing plastic pollution in the world's soil, aquatic, and marine compartments. Based on the current scientific literature, we focus on the current limits to prove plastic biodegradability and to assess the toxicity of commercially used biobased and biodegradable plastics in natural environments. We also discuss the relevance of biodegradable plastics for selected applications with respect to their use and end of life.
View Article and Find Full Text PDFBoth an experimental and a theoretical investigation of fracture propagation mechanisms acting at the process zone scale in glassy polymers are presented. The main aim is to establish a common modeling for different kinds of glassy polymers presenting either steady-state fracture propagation or stick-slip fracture propagation or both, depending on loading conditions and sample shapes. From the experimental point of view, new insights are provided by the AFM measurements of viscoplastic strain fields acting within the micrometric process zone in a brittle epoxy resin, which highlight an extremely slow unexpected steady-state regime with finite plastic strains of about 30% around a blunt crack tip, accompanied by propagating shear lips.
View Article and Find Full Text PDFPlastic pollution has become a worldwide concern. It was demonstrated that plastic breaks down to nanoscale particles in the environment, forming so-called nanoplastics. It is important to understand their ecological impact, but their structure is not elucidated.
View Article and Find Full Text PDFThe increase of plastics and microplastics in the environment is a major environmental challenge. Still, little is known about the degradation kinetics of macroplastics into smaller particles, under the joint actions of micro-organisms and physico-chemical factors, like UV or mechanical constraints. In order to gain insight into (bio)-degradation in various media, we perform accelerated erosion experiments by using a well-known enzymatic system.
View Article and Find Full Text PDFPlastics are ubiquitous in the oceans and constitute suitable matrices for bacterial attachment and growth. Understanding biofouling mechanisms is a key issue to assessing the ecological impacts and fate of plastics in marine environment. In this study, we investigated the different steps of plastic colonization of polyolefin-based plastics, on the first one hand, including conventional low-density polyethylene (PE), additivated PE with pro-oxidant (OXO), and artificially aged OXO (AA-OXO); and of a polyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), on the other hand.
View Article and Find Full Text PDFThe atomic force microscope tip was used to progressively abrade the surface of non-cut starch granules embedded in the endosperm protein matrix in grain sections from wheat near-isogenic lines differing in the puroindoline b gene and thus, hardness. In the hard near-isogenic wheat lines, starch granules exhibited two distinct profiles corresponding either to abrasion in the surrounding protein layer or the starch granule. An additional profile, only identified in soft lines, revealed a marked stop in the abrasion at the protein-starch transition similar to a lipid interface playing a lubricant role.
View Article and Find Full Text PDF