Micromachines (Basel)
April 2018
In this paper, an in-plane reciprocating displacement micropump for liquids and gases which is actuated by a new class of electrostatic bending actuators is reported. The so-called "Nano Electrostatic Drive" is capable of deflecting beyond the electrode gap distance, enabling large generated forces and deflections. Depending on the requirements of the targeted system, the micropump can be modularly designed to meet the specified differential pressures and flow rates by a serial and parallel arrangement of equally working pumping base units.
View Article and Find Full Text PDFCommon quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements.
View Article and Find Full Text PDFProteins are the most vital biological functional units in every living cell. Measurement of protein stability is central to understanding their structure, function and role in diseases. While proteins are also sought as therapeutic agents, they can cause diseases by misfolding and aggregation in vivo.
View Article and Find Full Text PDFProtein stability and ligand-binding affinity measurements are widely required for the formulation of biopharmaceutical proteins, protein engineering and drug screening within life science research. Current techniques either consume too much of often precious biological or compound materials, in large sample volumes, or alternatively require chemical labeling with fluorescent tags to achieve measurements at submicrolitre volumes with less sample. Here we present a quantitative and accurate method for the determination of protein stability and the affinity for small molecules, at only 1.
View Article and Find Full Text PDF