To summarize current knowledge and gaps regarding the role of postprandial glycaemic response in the paediatric population, a workshop was organized in June 2021 by the European branch of the International Life Science Institute (ILSI). This virtual event comprised of talks given by experts followed by in-depth discussions in breakout sessions with workshop participants. The main pre-specified topics addressed by the workshop organizing committee to the invited speakers and the workshop participants were: (1) the role of glycaemic responses for paediatric health, based on mechanistic insights from animal and human data, and long-term evidence from observational and intervention studies in paediatric populations, and (2) changes in metabolism and changes in dietary needs from infancy to adolescence.
View Article and Find Full Text PDFLittle is known of the impact of individual SFAs and their isoenergetic substitution with other SFAs or unsaturated fatty acids (UFAs) on the prevention of cardiometabolic disease (CMD). This systematic literature review assessed the impact of such dietary substitutions on a range of fasting CMD risk markers, including lipid profile, markers of glycemic control and inflammation, and metabolic hormone concentrations. Eligible randomized controlled trials (RCTs) investigated the effect of isoenergetic replacements of individual dietary SFAs for ≥14 d on ≥1 CMD risk markers in humans.
View Article and Find Full Text PDFWith the important role of the gut microbiome in health and disease, it is crucial to understand key factors that establish the microbial community, including gut colonization during infancy. It has been suggested that the first bacterial exposure is via a placental microbiome. However, despite many publications, the robustness of the evidence for the placental microbiome and transfer of bacteria from the placenta to the infant gut is unclear and hence the concept disputed.
View Article and Find Full Text PDFThere is considerable interest in dietary and other approaches to maintaining blood glucose concentrations within the normal range and minimizing exposure to postprandial hyperglycemic excursions. The accepted marker to evaluate the sustained maintenance of normal blood glucose concentrations is glycated hemoglobin A1c (HbA1c). However, although this is used in clinical practice to monitor glycemic control in patients with diabetes, it has a number of drawbacks as a marker of efficacy of dietary interventions that might beneficially affect glycemic control in people without diabetes.
View Article and Find Full Text PDFAnimals react to environmental changes over timescales ranging from seconds to days and weeks. An important question is how sensory stimuli are parsed into neural signals operating over such diverse temporal scales. Here, we uncover a specialized circuit, from sensory neurons to higher brain centers, that processes information about long-lasting, absolute cold temperature in Drosophila.
View Article and Find Full Text PDFPurpose: Malignant hyperthermia (MH) is a pharmacogenetic disorder arising from uncontrolled muscle calcium release due to an abnormality in the sarcoplasmic reticulum (SR) calcium-release mechanism triggered by halogenated inhalational anesthetics. However, the molecular mechanisms involved are still incomplete.
Methods: We aimed to identify transient receptor potential vanilloid 1 (TRPV1) variants within the entire coding sequence in patients who developed sensitivity to MH of unknown etiology.
Circadian clocks regulate membrane excitability in master pacemaker neurons to control daily rhythms of sleep and wake. Here, we find that two distinctly timed electrical drives collaborate to impose rhythmicity on Drosophila clock neurons. In the morning, a voltage-independent sodium conductance via the NA/NALCN ion channel depolarizes these neurons.
View Article and Find Full Text PDFDeviation of the ambient temperature is one of the most ubiquitous stimuli that continuously affect mammals' skin. Although the role of the warmth receptors in epidermal homeostasis (EH) was elucidated in recent years, the mystery of the keratinocyte mild-cold sensor remains unsolved. Here we report the cloning and characterization of a new functional epidermal isoform of the transient receptor potential M8 (TRPM8) mild-cold receptor, dubbed epidermal TRPM8 (eTRPM8), which is localized in the keratinocyte endoplasmic reticulum membrane and controls mitochondrial Ca(2+) concentration ([Ca(2+)]m).
View Article and Find Full Text PDFMethods Enzymol
November 2015
Circadian clocks modulate the action potential firing frequency of pacemaker neurons. This daily variation in membrane excitability has been described in multiple species: from mollusks to fruit flies and mammals. Here, we provide an overview of the Drosophila pacemaker neural network, how circadian clocks drive neuronal activity within this network and we will present electrophysiological methods that we have applied to directly measure neuronal activity and reveal signal transduction pathways.
View Article and Find Full Text PDFMolecular circadian clocks are interconnected via neural networks. In Drosophila, PIGMENT-DISPERSING FACTOR (PDF) acts as a master network regulator with dual functions in synchronizing molecular oscillations between disparate PDF(+) and PDF(-) circadian pacemaker neurons and controlling pacemaker neuron output. Yet the mechanisms by which PDF functions are not clear.
View Article and Find Full Text PDFOne important mechanism of the regulation of membrane ion channels involves their nonfunctional isoforms generated by alternative splicing. However, knowledge of such isoforms for the members of the transient receptor potential (TRP) superfamily of ion channels remains quite limited. This study focuses on the TRPM8, which functions as a cold receptor in sensory neurons but is also expressed in tissues not exposed to ambient temperatures, as well as in cancer tissues.
View Article and Find Full Text PDFDespite remarkable advances in the therapy and prevention of prostate cancer it is still the second cause of death from cancer in industrialized countries. Many therapies initially shown to be beneficial for the patients were abandoned due to the high drug resistance and the evolution rate of the tumors. One of the prospective therapeutical agents even used in the first stage clinical trials, 1,25-dihydroxyvitamin D3, was shown to be either unpredictable or inefficient in many cases.
View Article and Find Full Text PDFProstate cancer is the second cancer-related cause of death. Nowadays, the aim of treatments is to decrease the effects of androgens on this organ. Unfortunately, over time, patients develop an androgen-independent cancer with a fatal outcome.
View Article and Find Full Text PDFAberrant keratinocyte differentiation is considered to be a key mechanism in the onset of hyperproliferative dermatological diseases, including basal cell carcinoma (BCC). It is, therefore, vital to understand what drives keratinocytes to develop such pathological phenotypes. The role of calcium in keratinocyte differentiation is uncontested but the mechanisms controlling calcium-induced differentiation have yet to be completely elucidated.
View Article and Find Full Text PDFIn recent years, the transient receptor potential melastatin member 8 (TRPM8) channel has emerged as a promising prognostic marker and putative therapeutic target in prostate cancer (PCa). However, the mechanisms of prostate-specific regulation and functional evolution of TRPM8 during PCa progression remain unclear. Here we show, for the first time to our knowledge, that only secretory mature differentiated human prostate primary epithelial (PrPE) luminal cells expressed functional plasma membrane TRPM8 ((PM)TRPM8) channels.
View Article and Find Full Text PDFTRPM8 represents an ion channel activated by cold temperatures and cooling agents, such as menthol, that underlies the cold-induced excitation of sensory neurons. Interestingly, the only human tissue outside the peripheral nervous system, in which the expression of TRPM8 transcripts has been detected at high levels, is the prostate, a tissue not exposed to any essential temperature variations. Here we show that the TRPM8 cloned from human prostate and heterologously expressed in HEK-293 cells is regulated by the Ca(2+)-independent phospholipase A(2) (iPLA(2)) signaling pathway with its end products, lysophospholipids (LPLs), acting as its endogenous ligands.
View Article and Find Full Text PDFCalcium concentration within the endoplasmic reticulum (ER) plays an essential role in cell physiopathology. One of the most enigmatic mechanisms responsible for Ca2+ concentration in the ER is passive calcium leak. Previous studies have shown that the translocon complex is permeable to calcium.
View Article and Find Full Text PDFOne major clinical problem with prostate cancer is the cells' ability to survive and proliferate upon androgen withdrawal. Because Ca2+ is central to growth control, understanding the mechanisms of Ca2+ homeostasis involved in prostate cancer cell proliferation is imperative for new therapeutic strategies. Here, we show that agonist-mediated stimulation of alpha1-adrenergic receptors (alpha1-AR) promotes proliferation of the primary human prostate cancer epithelial (hPCE) cells by inducing store-independent Ca2+ entry and subsequent activation of nuclear factor of activated T cells (NFAT) transcription factor.
View Article and Find Full Text PDFRecent cloning of a cold/menthol-sensitive TRPM8 channel (transient receptor potential melastatine family member 8) from rodent sensory neurons has provided the molecular basis for the cold sensation. Surprisingly, the human orthologue of rodent TRPM8 also appears to be strongly expressed in the prostate and in the prostate cancer-derived epithelial cell line, LNCaP. In this study, we show that despite such expression, LNCaP cells respond to cold/menthol stimulus by membrane current (I(cold/menthol)) that shows inward rectification and high Ca(2+) selectivity, which are dramatically different properties from "classical" TRPM8-mediated I(cold/menthol).
View Article and Find Full Text PDFUnder resting conditions, the endoplasmic reticulum (ER) intraluminal free calcium concentration ([Ca(2+)](ER)) reflects a balance between active uptake by Ca(2+)-ATPases and passive efflux via 'leak channels'. Despite their physiological importance and ubiquitous leak pathway mechanism, very little is known about the molecular nature of these channels. As it has been suggested that the open translocon pore complex of the ER is permeable to ions and neutral molecules, we hypothesized that the ribosome-bound translocon would be permeable to calcium after treatment with puromycin, a translation inhibitor that specifically releases polypeptide chains.
View Article and Find Full Text PDF