This review is dedicated to recent developments on the topic of light sensitive polymer-based microcapsules. The microcapsules discussed are constructed using the layer-by-layer self-assembly method, which consists in absorbing oppositely charged polyelectrolytes onto charged sacrificial particles. Microcapsules display a broad spectrum of qualities over other existing microdelivery systems such as high stability, longevity, versatile construction and a variety of methods to encapsulate and release substances.
View Article and Find Full Text PDFWe present a novel approach to construct hollow polymeric microcontainers that can be remotely addressed using a low-power near-infrared laser to release encapsulated materials. Microshells possessing walls with aggregates of gold nanoparticles are found to release encapsulated materials upon near-IR irradiation, while shells containing the same amount of nonaggregated gold nanoparticles did not release their contents. The permeability of thermally shrunk microcapsules to dextran molecules is the lowest for shells containing nonaggregated nanoparticles and the highest for microcapsules with no nanoparticles.
View Article and Find Full Text PDFPolymeric nanometer-thick membranes or nanomembranes possessing photocontrollable permeability are presented. Microcapsules are used as membrane model systems, while gold nanoparticle aggregates are used as active absorption centers. Upon laser light illumination the membranes change permeability reversibly because nanoparticles transiently affect the nearby polymeric network.
View Article and Find Full Text PDF