Publications by authors named "Matthieu Bauer"

Danon disease is a familial cardiomyopathy associated with impaired autophagy due to mutations in the gene encoding lysosomal-associated membrane protein type 2 (LAMP-2). Emerging evidence has highlighted the importance of autophagy in regulating cardiomyocyte bioenergetics, function, and survival. However, the mechanisms responsible for cellular dysfunction and death in cardiomyocytes with impaired autophagic flux remain unclear.

View Article and Find Full Text PDF

WNT5A, a member of the WNT family of secreted lipid-modified glycoproteins, is a critical regulator of a host of developmental processes, including limb formation, lung morphogenesis, intestinal elongation and mammary gland development. Altered WNT5A expression has been associated with a number of cancers. Interestingly, in certain types of cancers, such as hematological malignancies and colorectal carcinoma, WNT5A is inactivated and exerts a tumor suppressive function, while in other cancers, such as melanoma and gastric carcinoma, WNT5A is overexpressed and promotes tumor progression.

View Article and Find Full Text PDF

Functional and mechanistic studies of Wnt signaling have been severely hindered by the inaccessibility of bioactive proteins. To overcome this long-standing barrier, we engineered and characterized a panel of Chinese hamster ovary (CHO) cell lines with inducible transgenes encoding tagged and un-tagged human WNT1, WNT3A, WNT5A, WNT7A, WNT11, WNT16 or the soluble Wnt antagonist Fzd8CRD, all integrated into an identical genomic locus. Using a quantitative real-time bioluminescence assay, we show that cells expressing WNT1, 3A and 7A stimulate Wnt/beta-catenin reporter activity, while the other WNT expressing cell lines interfere with this activation.

View Article and Find Full Text PDF

In a study in the December 15, 2011, issue of Genes & Development, Valenta and colleagues (pp. 2631-2643) constructed a series of β-catenin mutants that allowed them to separate β-catenin's activity as a mediator of Wnt signaling from its activity as cell adhesion component. In doing so, they uncovered some surprising properties of Wnt signaling.

View Article and Find Full Text PDF

MYCN activation, mainly by gene amplification, is one of the most frequent molecular events in neuroblastoma (NB) oncogenesis, and is associated with increased malignancy and decreased neuronal differentiation propensity. The frequency of concomitant loss of heterozygosity at the 1p36.3 locus, which harbours the p53 anti-oncogene homologue TP73, indicates that MYCN and p73 alterations may cooperate in the pathogenesis of NB.

View Article and Find Full Text PDF

The developmental and oncogenic roles of MYC proteins are well established, but the transcriptional targets mediating their functions remain elusive. Using small interfering RNA-mediated knockdown in breast and cervix carcinoma cell lines, which overexpress c-MYC, we show that c-MYC independently controls metabolism and cell proliferation, and can, depending on the cells, promote or inhibit migration. We identified new c-MYC target genes in these cell lines, and show that selective regulation of some targets correlates with the phenotypic responses of these different cell lines to c-MYC depletion.

View Article and Find Full Text PDF