When multiple sets of skeletonized human remains exist in the same context, they can become commingled due to multifactorial circumstances that affect the postmortem environment. Numerous techniques exist for reassociating commingled skeletal remains (e.g.
View Article and Find Full Text PDFA major challenge in forensic anthropology and bioarcheology is the development of fast and effective methods for sorting commingled remains. This study assesses how portable laser-induced breakdown spectroscopy (LIBS) can be used to group skeletal remains based on their elemental profiles. LIBS spectra were acquired from the remains of 45 modern skeletons, with a total data set of 8388 profiles from 1284 bones.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
April 2023
Firearm related evidence is of great significance to forensic science. In recent years, many researchers have focused on exploring the probative value of organic gunshot residue (OGSR) evidence, which is often bolstered by many factors including recoverability. In addition, OGSR analysis has shown the potential to achieve differentiation between OGSRs generated from various ammunition brands and/or calibers.
View Article and Find Full Text PDFThe aim of this study was to develop a novel biodegradable magnesium (Mg) alloy for bone implant applications. We used scandium (Sc; 2 wt %) and strontium (Sr; 2 wt %) as alloying elements due to their high biocompatibility, antibacterial efficacy, osteogenesis, and protective effects against corrosion. In the present work, we also examined the effect of a heat treatment process on the properties of the Mg-Sc-Sr alloy.
View Article and Find Full Text PDFTire evidence is a form of trace evidence that is often overlooked in today's forensics, while frequently found at crime or accident scenes, usually in the form of skid marks. The pattern of the tire skid mark has been used before to link a tire or car to a scene, but the widespread use of anti-lock braking systems makes this an almost impossible and abandoned route of analysis. With this in mind, using the chemical profile of a tire has potential to link a car or tire back to a scene in which its trace material is found.
View Article and Find Full Text PDFPara-, or 4-nitrophenol, and related nitroaromatics are broadly used compounds in industrial processes and as a result are among the most common anthropogenic pollutants in aqueous industrial effluent; this requires development of practical remediation strategies. Their catalytic reduction to the less toxic and synthetically desirable aminophenols is one strategy. However, to date, the majority of work focuses on catalysts based on precisely tailored, and often noble metal-based nanoparticles.
View Article and Find Full Text PDFLaser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) are widely accepted techniques for direct sampling of biological materials for elemental analysis, with increasing applications being reported over the recent years. This review is focused on the calibration materials used to quantify trace elements in different biological samples such as soft tissues (for instance brain, liver, hair) and hard tissues (bones and teeth). The design of a correct calibration strategy relies on the choice of an adapted reference material that can be commercially available or prepared in-house, which will be reviewed here.
View Article and Find Full Text PDFAppl Spectrosc
October 2019
Laser-induced breakdown spectroscopy (LIBS) has recently demonstrated its unrivaled performance for broadband elemental imaging of surfaces. The dimensions of the laser sampling spot still being potentially larger than the interfaces of chemical domains, the plasma created at each location can be largely varying and inhomogeneous with contributions from the different sides of the interface. This variation can become problematic when imaging it on fiber bundles connected to multiple spectrometers.
View Article and Find Full Text PDFThe controlled interaction of two high intensity beams opens new degrees of freedom for manipulating electromagnetic waves in air. The growing number of applications for laser filaments requires fine control of their formation and propagation. We demonstrate, experimentally and theoretically, that the attraction and fusion of two parallel ultrashort beams with initial powers below the critical value (70% P ), in the regime where the non-linear optical characteristics of the medium become dominant, enable the eventual formation of a filament downstream.
View Article and Find Full Text PDFBroadband laser sources based on supercontinuum generation in femtosecond laser filamentation have enabled applications from stand-off sensing and spectroscopy to the generation and self-compression of high-energy few-cycle pulses. Filamentation relies on the dynamic balance between self-focusing and plasma defocusing - mediated by the Kerr nonlinearity and multiphoton or tunnel ionization, respectively. The filament properties, including the supercontinuum generation, are therefore highly sensitive to the properties of both the laser source and the propagation medium.
View Article and Find Full Text PDFQuantitative measurements of the angular distribution of the plasma line emission from a gallium arsenide (GaAs) target irradiated by a single laser-air filament are reported. These enable reliable estimates of the stand-off ranges possible with single-filament-induced laser-induced breakdown spectroscopy materials detection.
View Article and Find Full Text PDFLaser filamentation in gases is often carried out in the laboratory with focusing optics to better stabilize the filament, whereas real-world applications of filaments frequently involve collimated or near-collimated beams. It is well documented that geometrical focusing can alter the properties of laser filaments and, consequently, a transition between a collimated and a strongly focused filament is expected. Nevertheless, this transition point has not been identified.
View Article and Find Full Text PDFA method is described for performing discriminant analysis in the presence of interfering background signal. The method is based on performing target factor analysis on a data set comprised of contributions from analyte(s) and interfering components. A library of data from representative analyte classes is tested for possible contributing factors by performing oblique rotations of the principal factors to obtain the best match, in a least-squares sense, between test and predicted vectors.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
July 2011
We demonstrate the generation of a nondiffracting double helical beam using axicons and ±1 vortex phase plates in a common-path interferometric system. Using linear diffraction theory, a simple analytical expression describing beam propagation is shown to agree with both experiments and Fresnel-diffraction-based simulations. Experiments are performed using continuous laser light in addition to ultrafast pulses, demonstrating that the common-path arrangement and the diffraction theory work equally well for both cases.
View Article and Find Full Text PDFWe report the first implementation of a 2 microm thulium fiber laser in a Laser-Induced Breakdown Spectroscopy system. Emission from plasma on copper samples was analyzed from 200 to 900 nm. The low ablation fluence (<100 J.
View Article and Find Full Text PDFLaser-induced breakdown spectroscopy (LIBS) using double-pulse irradiation with Nd:YAG and CO(2) lasers was applied to the analysis of a polystyrene film on a silicon substrate. An enhanced emission signal, compared to single-pulse LIBS using a Nd:YAG laser, was observed from atomic carbon, as well as enhanced molecular emission from C(2) and CN. This double-pulse technique was further applied to 2,4,6-trinitrotoluene residues, and enhanced LIBS signals for both atomic carbon and molecular CN emission were observed; however, no molecular C(2) emission was detected.
View Article and Find Full Text PDF