Publications by authors named "Matthias Zscharnack"

Due to the poor self-healing capacities of cartilage, innovative approaches are a major clinical need. The use of in vitro expanded mesenchymal stromal cells (MSCs) in a 2-stage approach is accompanied by cost-, time-, and personnel-intensive good manufacturing practice production. A 1-stage intraoperative procedure could overcome these drawbacks.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) have great promise in the field of regenerative medicine due to their differentiation potential into several lineages. Besides the bone marrow, MSCs can be obtained from the dermis, which represents a large stem cell reservoir in the skin. Sheep provide an appropriate large animal model for preclinical studies.

View Article and Find Full Text PDF

Background: The clinical development of advanced therapy medicinal products (ATMPs), a new class of drugs, requires initial safety studies that deviate from standard non-clinical safety protocols. The study provides a strategy to address the safety aspects of biodistribution and tumorigenicity of ATMPs under good laboratory practice (GLP) conditions avoiding cell product manipulation. Moreover, the strategy was applied on a human ATMP for cartilage repair.

View Article and Find Full Text PDF

Therapeutic application of mesenchymal stem cells (MSC) requires their extensive in vitro expansion. MSC in culture typically grow to confluence within a few weeks. They show spindle-shaped fibroblastoid morphology and align to each other in characteristic spatial patterns at high cell density.

View Article and Find Full Text PDF

Background: The use of predifferentiated mesenchymal stem cells (MSC) leads to better histological results compared with undifferentiated MSC in sheep. This raises the need for a longer term follow-up study and comparison with a clinically established method.

Hypothesis: We hypothesized that chondrogenic in vitro predifferentiation of autologous MSC embedded in a collagen I hydrogel leads to better structural repair of a chronic osteochondral defect in an ovine stifle joint after 1 year.

View Article and Find Full Text PDF

Background: The use of mesenchymal stem cells (MSCs) to treat osteochondral defects caused by sports injuries or disease is of particular interest. However, there is a lack of studies in large-animal models examining the benefits of chondrogenic predifferentiation in vitro for repair of chronic osteochondral defects.

Hypothesis: Chondrogenic in vitro predifferentiation of autologous MSCs embedded in a collagen I hydrogel currently in clinical trial use for matrix-associated autologous chondrocyte transplantation facilitates the regeneration of a chronic osteochondral defect in an ovine stifle joint.

View Article and Find Full Text PDF

MALDI-TOF MS is traditionally used for "proteomics", but is also a useful tool for lipid analysis. Depending on the applied matrix, however, some lipid classes are more sensitively detected than other ones and this may even lead to suppression effects if complex mixtures are analyzed. Therefore, a previous separation into the individual lipid classes is necessary.

View Article and Find Full Text PDF

Two genes coding for proteins with a high degree of sequence similarity to glycerol-3-phosphate dehydrogenases have been isolated from the yeast Pichiajadinii. Fragments of the genes were PCR-amplified with degenerated primers from genomic DNA of P. jadinii.

View Article and Find Full Text PDF

Lately certain cytotoxicity of quantum dots (QDs) and some deleterious effects of labeling procedure on stem cells differentiation abilities were shown. In the present study we compared cytotoxicity and intracellular processing of two different-sized protein-conjugated QDs after labeling of the human mesenchymal stem cells (hMSC). An asymmetrical intracellular uptake of red (605 nm) and green (525 nm) quantum dots was observed.

View Article and Find Full Text PDF

Artificial cartilage constructs based on primary porcine chondrocytes embedded in agarose gel were cultivated for six weeks under static, free swelling conditions. Standard biochemical assays, immunocytochemical staining methods, MALDI-TOF mass spectrometry, and non-invasive 13C solid-state NMR spectroscopy were used to assess cell proliferation, chondrocyte metabolism, extracellular matrix composition, matrix production, and the nanoarchitecture of the macromolecules in the constructs. In particular the production of sulphated glycosaminoglycans such as chondroitin sulphate was investigated quantitatively.

View Article and Find Full Text PDF