Publications by authors named "Matthias Wacker"

Poly(lactide-co-glycolide) (PLG) nanoparticles loaded with doxorubicin have reached phase-I clinical trials for treating advanced solid tumors. This study explores cell hitchhiking, where nanoparticles associate with blood cells and investigates the impact on pharmacokinetics and tumor migration. Previous findings highlighted the early post-injection phase dominated by nonspecific nanoparticle-cell interactions and burst release.

View Article and Find Full Text PDF

The field of nanomedicine is undergoing a seismic transformations with the rise of nanosimilars, reshaping the pharmaceutical landscape and expanding beyond traditional innovators and generic manufacturers. Nanodrugs are increasingly replacing conventional therapies, offering improved efficacy and safety, while the demand for follow-on products drives market diversification. However, the transition from preclinical to clinical stages presents challenges due to the complex biopharmaceutical behavior of nanodrugs.

View Article and Find Full Text PDF
Article Synopsis
  • The introduction highlights the issue of stubborn infections causing various stomach disorders, which traditional antibiotic treatments struggle with due to rising antibiotic resistance.* -
  • The review discusses different types of micro/nano biomaterials and their delivery methods for effectively inhibiting these infections, along with a holistic overview of promising treatment options like metal-based materials and vaccines.* -
  • The expert opinion suggests that using these micro/nano biomaterials loaded with anti-infective agents may effectively kill bacteria while minimally affecting the gut microbiota, but further data is needed to confirm these findings.*
View Article and Find Full Text PDF

Predictive performance assays are crucial for the development and approval of nanomedicines and their bioequivalent successors. At present, there are no established compendial methods that provide a reliable standard for comparing and selecting these formulation prototypes, and our understanding of the in vivo release remains still incomplete. Consequently, extensive animal studies, with enhanced analytical resolution for both, released and encapsulated drug, are necessary to assess bioequivalence.

View Article and Find Full Text PDF

RNA therapeutics represent a rapidly expanding platform with game-changing prospects in personalized medicine. The disruptive potential of this technology will overhaul the standard of care with reference to both primary and specialty care. To date, RNA therapeutics have mostly been delivered parenterally via injection, but topical administration followed by intradermal or transdermal delivery represents an attractive method that is convenient to patients and minimally invasive.

View Article and Find Full Text PDF

Purpose: This study investigated the brain targeting mechanism of doxorubicin-loaded polybutyl cyanoacrylate (PBCA) nanoparticles, particularly their interactions with the blood-brain barrier (BBB). The BBB protects the brain from drugs in the bloodstream and represents a crucial obstacle in the treatment of brain cancer.

Methods: An advanced computer model analyzed the brain delivery of two distinct formulations, Doxil and surfactant-coated PBCA nanoparticles.

View Article and Find Full Text PDF

In the century of precision medicine and predictive modeling, addressing quality-related issues in the medical supply chain is critical, with 62 % of the disruptions being attributable to quality challenges. This study centers on the development and safety of liposomal doxorubicin, where animal studies alone often do not adequately explain the complex interplay between critical quality attributes and in vivo performances. Anchored in our aim to elucidate this in vitro-in vivo nexus, we compared TLD-1, a novel liposomal doxorubicin delivery system, against the established formulations Doxil® and Lipodox®.

View Article and Find Full Text PDF
Article Synopsis
  • Nanomedicines are special tiny medicines that can do many jobs, but scientists still don't understand how they work very well, which makes it hard to use them in real-life treatments.
  • To make better nanomedicines, researchers are screening different designs to find the best ones to use in patients.
  • They created predictions and a model to compare and improve similar products, helping to make sure new medicines work like the original ones do.
View Article and Find Full Text PDF
Article Synopsis
  • PLG nanoparticles are promising for cancer therapy due to their effectiveness and biodegradability, making it crucial to study their interactions with blood cells and how they distribute in the body.
  • Three types of doxorubicin-loaded PLG nanoparticles were created and analyzed for their characteristics and drug release behaviors, with real-time tracking of their movement in tumor-bearing mice.
  • The study found that after injection, PLG nanoparticles quickly released the drug and interacted with blood cells, affecting how the drugs are processed and cleared from circulation, providing insights for improving nanoparticle drug delivery in cancer treatment.
View Article and Find Full Text PDF

Helicobacter pylori (H. pylori) is a recalcitrant pathogen, which can cause gastric disorders. During the past decades, polypharmacy-based regimens, such as triple and quadruple therapies have been widely used against H.

View Article and Find Full Text PDF

Intravenous iron-carbohydrate complexes are nanomedicines that are commonly used to treat iron deficiency and iron deficiency anemia of various etiologies. Many challenges remain regarding these complex drugs in the context of fully understanding their pharmacokinetic parameters. Firstly, the measurement of the intact iron nanoparticles versus endogenous iron concentration fundamentally limits the availability of data for computational modeling.

View Article and Find Full Text PDF

Pharmacometric analysis is often used to quantify the differences and similarities between formulation prototypes. In the regulatory framework, it plays a significant role in the evaluation of bioequivalence. While non-compartmental analysis provides an unbiased data evaluation, mechanistic compartmental models such as the physiologically-based nanocarrier biopharmaceutics model promise improved sensitivity and resolution for the underlying causes of inequivalence.

View Article and Find Full Text PDF

Milk-derived extracellular vesicles (mEVs) have been proposed as a potential nanomedicine for intestinal disorders; however, their impact on intestinal barrier integrity in gut inflammation and associated metabolic diseases has not been explored yet. Here, mEVs derived from bovine and human breast milk exert similar protective effects on epithelial tight junction functionality in vitro, survive harsh gastrointestinal conditions ex vivo, and reach the colon in vivo. Oral administration of mEVs restores gut barrier integrity at multiple levels, including mucus, epithelial, and immune barriers, and prevents endotoxin translocation into the liver in chemical-induced experimental colitis and diet-induced nonalcoholic steatohepatitis (NASH), thereby alleviating gut disorders, their associated liver inflammation, and NASH.

View Article and Find Full Text PDF

Background: Chronic wounds often contain high levels of proinflammatory cytokines that prolong the wound-healing process. Patients suffering from these conditions are likely to benefit from topical rifampicin therapy. Although recent research indicates considerable anti-inflammatory properties of the antibiotic, currently, there are no commercial topical wound healing products available.

View Article and Find Full Text PDF

The subset of plasma extracellular vesicles (EVs) that coprecipitate with low-density lipoprotein (LDL-EVs) carry coagulation and fibrinolysis pathway proteins as cargo. We investigated the association between LDL-EV hemostatic/fibrinolysis protein ratios and post-acute myocardial infarction (post-AMI) left ventricular (LV) remodeling which precedes heart failure. Protein concentrations of von Willebrand factor (VWF), SerpinC1 and plasminogen were determined in LDL-EVs extracted from plasma samples obtained at baseline (within 72 h post-AMI), 1 month and 6 months post-AMI from 198 patients.

View Article and Find Full Text PDF

Topical preparations of hydrocortisone can be used for the anti-inflammatory treatment of the female genital area. Although the drug is a low-strength corticosteroid, systemic absorption and distribution of the drug are the most common safety risks associated with this therapy. In the current investigation, we elucidate the physicochemical properties of lipid-based drug carrier systems that govern the local bioavailability of hydrocortisone for intravaginal administration.

View Article and Find Full Text PDF

Chronic wounds exhibit elevated levels of inflammatory cytokines, resulting in the release of proteolytic enzymes which delay wound-healing processes. In recent years, rifampicin has gained significant attention in the treatment of chronic wounds due to an interesting combination of antibacterial and anti-inflammatory effects. Unfortunately, rifampicin is sensitive to hydrolysis and oxidation.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) represent a diverse class of lipid bilayer membrane vesicles released by both animal and plant cells. These ubiquitous vesicles are involved in intercellular communication and transport of various biological cargos, including proteins, lipids, and nucleic acids. In recent years, interest in plant-derived EVs has increased tremendously, as they serve as a scalable and sustainable alternative to EVs derived from mammalian sources.

View Article and Find Full Text PDF

At present, tricaprilin is used as a ketogenic source for the management of mild to moderate Alzheimer's disease. After administration of the medium-chain triglyceride, tricaprilin is hydrolyzed to octanoic acid and further metabolized to ketones, acting as an alternative energy substrate for the brain. In this investigation, we developed a physiologically-based biopharmaceutics model simulating in vivo processes following the peroral administration of tricaprilin.

View Article and Find Full Text PDF

() is a notorious, recalcitrant and silent germ, which can cause a variety of debilitating stomach diseases, including gastric and duodenal ulcers and gastric cancer. This microbe predominantly colonizes the mucosal layer of the human stomach and survives in the inhospitable gastric microenvironment, by adapting to this hostile milieu. In this review, we first discuss colonization and invasion.

View Article and Find Full Text PDF

Introduction: Biopredictive release tests are commonly used in the evaluation of oral medicines. They support decision-making in formulation development and allow predictions of the expected performances. So far, there is limited experience in the application of these methodologies to injectable drug products.

View Article and Find Full Text PDF

Today, a growing number of computational aids and simulations are shaping model-informed drug development. Artificial intelligence, a family of self-learning algorithms, is only the latest emerging trend applied by academic researchers and the pharmaceutical industry. Nanomedicine successfully conquered several niche markets and offers a wide variety of innovative drug delivery strategies.

View Article and Find Full Text PDF

The emerging landscape of nanomedicine includes a wide variety of active pharmaceutical ingredients and drug formulations. Their design provides nanomedicines with unique features leading to improved pharmacokinetics and pharmacodynamics. They are manufactured using conventional or biotechnological manufacturing processes.

View Article and Find Full Text PDF

Dermal delivery of bioactive molecules remains an attractive route of administration in osteoarthritis (OA) due to the local accumulation of drugs while avoiding their systemic side effects. In this study we propose a proniosome gel comprising non-ionic surfactants that self-assemble into de-hydrated vesicles for the delivery of the natural anti-inflammatory compound berberine. By modulating the hydrating ability of the proniosome gel, berberine can be efficiently released with minimal mechanical force.

View Article and Find Full Text PDF