Publications by authors named "Matthias Van den Bossche"

New measurement methods and equipment for correct 5G New Radio (NR) electromagnetic field (EMF) in-situ exposure assessment of instantaneous time-averaged exposure (Eavg) and maximum extrapolated field exposure (Emax) are proposed. The different options are investigated with in-situ measurements around 5G NR base stations (FR1) in different countries. The maximum electric field values satisfy the ICNIRP 2020 limit (maximum 7.

View Article and Find Full Text PDF

In an increasingly wireless world, spatiotemporal monitoring of the exposure to environmental radiofrequency (RF) electromagnetic fields (EMF) is crucial to appease public uncertainty and anxiety about RF-EMF. However, although the advent of smart city infrastructures allows for dense networks of distributed sensors, the costs of accurate RF sensors remain high, and dedicated RF monitoring networks remain rare. This paper describes a comprehensive study comprising the design of a low-cost RF-EMF sensor node capable of monitoring four frequency bands used by wireless telecommunications with an unparalleled temporal resolution, its application in a small-scale distributed sensor network consisting of both fixed (on building façades) and mobile sensor nodes (on postal vans), and the subsequent analysis of over a year of data between January 2019 and May 2020, during which slightly less than 10 million samples were collected.

View Article and Find Full Text PDF

Background: Exposure to radiofrequency electromagnetic fields (RF-EMF) is often measured with personal exposimeters, but the accuracy of measurements can be hampered as carrying the devices on-body may result in body shielding. Further, the compact design may compromise the frequency selectivity of the sensor. The aim of this study was to compare measurements obtained using a multi-band body-worn distributed-exposimeter (BWDM) with two commercially available personal exposimeters (ExpoM-RF and EmeSpy 200) under real-life conditions.

View Article and Find Full Text PDF

This paper describes radiofrequency (RF) electromagnetic field (EMF) measurements in the vicinity of single and banks of advanced metering infrastructure (AMI) smart meters. The measurements were performed in a meter testing and distribution facility as well as in-situ at five urban locations. The measurements consisted of gauging the RF environment at the place of assessment, evaluating the worst-case electric-field levels at various positions around the assessed AMI meter configuration (spatial assessment), which ranged from a single meter to a bank of 81 m, and calculating the duty cycle of the system, i.

View Article and Find Full Text PDF

The advent of the Internet of things comes with a huge increase in wirelessly communicating devices in our environment. For example, smart energy-consumption meters are being widely deployed in residences from which they communicate their state using radiofrequency networks. Accurate characterization of the radiofrequency emissions from emerging residential wireless solutions is important to inform the public about the potential impact on their exposure to radiofrequency electromagnetic fields.

View Article and Find Full Text PDF

A multi-band Body-Worn Distributed exposure Meter (BWDM) calibrated for simultaneous measurement of the incident power density in 11 telecommunication frequency bands, is proposed. The BDWM consists of 22 textile antennas integrated in a garment and is calibrated on six human subjects in an anechoic chamber to assess its measurement uncertainty in terms of 68% confidence interval of the on-body antenna aperture. It is shown that by using multiple antennas in each frequency band, the uncertainty of the BWDM is 22 dB improved with respect to single nodes on the front and back of the torso and variations are decreased to maximum 8.

View Article and Find Full Text PDF

The aims of this study were to: i) investigate the repeatability and representativeness of personal radio frequency-electromagnetic fields (RF-EMFs) exposure measurements, across different microenvironments, ii) perform simultaneous evaluations of personal RF-EMF exposures for the whole body and the head, iii) validate the data obtained with a head-worn personal distributed exposimeter (PDE) against those obtained with an on-body worn personal exposimeter (PEM). Data on personal and head RF-EMF exposures were collected by performing measurements across 15 microenvironments in Melbourne, Australia. A body-worn PEM and a head-worn PDE were used for measuring body and head exposures, respectively.

View Article and Find Full Text PDF

Historically, assessment of human exposure to electric and magnetic fields has focused on the extremely-low-frequency (ELF) and radiofrequency (RF) ranges. However, research on the typically emitted fields in the intermediate-frequency (IF) range (300Hz to 1MHz) as well as potential effects of IF fields on the human body remains limited, although the range of household appliances with electrical components working in the IF range has grown significantly (e.g.

View Article and Find Full Text PDF

In situ exposure of electric fields of 11 microwave ovens is assessed in an occupational environment and in an office. Measurements as a function of distance without load and with a load of 275 ml of tap water were performed at distances of <1 m. The maximal measured field was 55.

View Article and Find Full Text PDF

In this study, in situ exposure assessment of both electric and magnetic fields of different intermediate frequency (IF) sources is investigated. The authors investigated smart boards and touchscreens, energy-saving bulbs, fluorescent lamps, a portable hearing unit and an electrosurgical unit (ESU). For most of these sources, the electric field is the dominating quantity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session93j3effalmtppjgm0sdbscprt7her1ac): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once