Intrinsic optical imaging (IOI) is a well established technique to quantify activation-related hemodynamical changes at the surface of the brain, which can be used to investigate the underlying processes of BOLD signal formation. To directly and quantitatively relate IOI and fMRI, simultaneous measurements with the two modalities are necessary. Here, a novel technical solution for a completely in-bore setup is presented, which uses only magnetic field proof components and thus allows concurrent recordings with a quality similar to that obtained in separate experiments.
View Article and Find Full Text PDFColor vision is reserved to only few mammals, such as Old World monkeys and humans. Most Old World monkeys are trichromats. Among them, macaques were shown to exhibit functional domains of color-selectivity, in areas V1 and V2 of the visual cortex.
View Article and Find Full Text PDFImaging technologies, such as intrinsic optical imaging (IOI), functional magnetic resonance imaging (fMRI) or multiphoton microscopy provide excellent opportunities to study the relationship between functional signals recorded from a cortical area and the underlying anatomical structure. This, in turn, requires accurate alignment of the recorded functional imaging data with histological datasets from the imaged tissue obtained after the functional experiment. This alignment is complicated by distortions of the tissue which naturally occur during histological treatment, and is particularly difficult to achieve over large cortical areas, such as primate visual areas.
View Article and Find Full Text PDF