The human amniotic membrane (hAM) is a collagen-based extracellular matrix whose applications are restricted by its moderate mechanical properties and rapid biodegradation. In this work, we investigate the use of riboflavin, a water-soluble vitamin, to crosslink and strengthen the human amniotic membrane under UVA light. The effect of riboflavin-UVA crosslinking on hAM properties were determined via infrared spectroscopy, uniaxial tensile testing, proteolytic degradation, permeability testing, SEM, and quantification of free (un-crosslinked) amine groups.
View Article and Find Full Text PDFCardiovascular mechanical stresses trigger physiological and pathological cellular reactions including secretion of Transforming Growth Factor β1 ubiquitously in a latent form (LTGF-β1). While complex shear stresses can activate LTGF-β1, the mechanisms underlying LTGF-β1 activation remain unclear. We hypothesized that different types of shear stress differentially activate LTGF-β1.
View Article and Find Full Text PDFACS Biomater Sci Eng
July 2018
The human amniotic membrane (hAM) is a collagen-based extracellular matrix derived from the human placenta. It is a readily available, inexpensive, and naturally biocompatible material. Over the past decade, the development of tissue engineering and regenerative medicine, along with new decellularization protocols, has recast this simple biomaterial as a tunable matrix for cellularized tissue engineered constructs.
View Article and Find Full Text PDFAdipose-derived stem cells represent a reliable adult stem cell source thanks to their abundance, straightforward isolation, and broad differentiation abilities. Consequently, human adipose-derived stem cells (hASCs) have been used in vitro for several innovative cellular therapy and regenerative medicine applications. However, the translation of a novel technology from the laboratory to the clinic requires first to evaluate its safety, feasibility, and potential efficacy through preclinical studies in animals.
View Article and Find Full Text PDFThis study examines the design and evaluation strategies for a year-long teacher learning and development experience, including their effectiveness, efficiency and recommendations for strategic redesign. Design characteristics include programmatic features and outcomes: cognitive, affective and motivational processes; interpersonal and social development; and performance activities. Program participants were secondary math and science teachers, partnered with engineering faculty mentors, in a research university-based education and support program.
View Article and Find Full Text PDFBecause of their unique physical, chemical, and electrical properties, carbon nanotubes are an attractive material for many potential applications. Their interactions with biological entities are, however, not yet completely understood. To fill this knowledge gap, we present experimental results for aqueous systems containing single-walled carbon nanotubes and phospholipid membranes, prepared in the form of liposomes.
View Article and Find Full Text PDFAccurate assessment of blood platelet function is essential in understanding thrombus formation which plays a central role in cardiovascular disease. Parallel plate flow chambers have been widely used as they allow for platelet adhesion on a collagen surface at physiologically relevant fluid mechanical forces. Standard parallel plate flow chambers typically need several milliliters of blood, which is substantially more than can be obtained from small animals.
View Article and Find Full Text PDFSingle walled carbon nanotubes (SWNTs) continue to demonstrate the potential of nanoscaled materials in a wide range of applications. The ability to modulate the mechanical or electrical properties of a material by varying the SWNT component may result in diverse "application tunable" materials. Similarly, biomaterials used in tissue engineering applications may benefit from these characteristics by varying electrical and mechanical properties to enhance or direct tissue specific regeneration.
View Article and Find Full Text PDFIntegrins are a class of cell adhesion molecules that bind to ligands containing the RGD peptide sequence. There is increasing evidence that peptide sites other than the RGD site are required for optimal binding of integrins with their ligands. We have examined the sites on the protein fibronectin that are needed for optimal binding to the platelet integrin alphaIIbbeta3 using a strategy of site directed mutagenesis.
View Article and Find Full Text PDFJ Biomed Mater Res A
March 2006
Single-walled carbon nanotubes (SWNT) have been the focus of considerable attention as a material with extraordinary mechanical and electrical properties. SWNT have been proposed in a number of biomedical applications, including neural, bone, and dental tissue engineering. In these applications, it is clear that surrounding tissues will come into surface contact with SWNT composites, and compatibility between SWNT and host cells must be addressed.
View Article and Find Full Text PDFNitric oxide (NO) is a free radical that plays an important role in modulating platelet adhesion and aggregation. Platelets are a source of vascular NO, but since erythrocytes avidly scavenge NO, the functional significance of platelet-derived NO is not clear. Our purpose was to determine if NO from platelets affects platelet thrombus formation in the presence of anticoagulated whole blood in an in vitro parallel plate flow system.
View Article and Find Full Text PDFLeukocytes roll on selectins at nearly constant velocities over a wide range of wall shear stresses. Ligand-coupled microspheres roll faster on selectins and detach quickly as wall shear stress is increased. To examine whether the superior performance of leukocytes reflects molecular features of native ligands or cellular properties that favor selectin-mediated rolling, we coupled structurally defined selectin ligands to microspheres or K562 cells and compared their rolling on P-selectin.
View Article and Find Full Text PDF