Necroptosis is a regulated form of cell death that has been observed in Alzheimer's disease (AD) along with the classical pathological hallmark lesions of amyloid plaques and Tau neurofibrillary tangles. To understand the neurodegenerative process in AD, we studied the role of necroptosis in mouse models and primary mouse neurons. Using immunohistochemistry, we demonstrated activated necroptosis-related proteins in transgenic mice developing Tau pathology and in primary neurons from amyloid precursor protein (APP)-Tau double transgenic mice treated with phosphorylated Tau seeds derived from a patient with AD but not in APP transgenic mice that only exhibited β-amyloid deposits.
View Article and Find Full Text PDFBrain Aβ deposition is a key early event in the pathogenesis of Alzheimer´s disease (AD), but the long presymptomatic phase and poor correlation between Aβ deposition and clinical symptoms remain puzzling. To elucidate the dependency of downstream pathologies on Aβ, we analyzed the trajectories of cerebral Aβ accumulation, Aβ seeding activity, and neurofilament light chain (NfL) in the CSF (a biomarker of neurodegeneration) in Aβ-precursor protein transgenic mice. We find that Aβ deposition increases linearly until it reaches an apparent plateau at a late age, while Aβ seeding activity increases more rapidly and reaches a plateau earlier, coinciding with the onset of a robust increase of CSF NfL.
View Article and Find Full Text PDFStarting from lead compound , the 1,4-oxazine headgroup was optimized to improve potency and brain penetration. Focusing at the 6-position of the 5-amino-1,4-oxazine, the insertion of a Me and a CF group delivered an excellent pharmacological profile with a p of 7.1 and a very low P-gp efflux ratio enabling high central nervous system (CNS) penetration and exposure.
View Article and Find Full Text PDFAmyloid-β (Aβ) deposits are a relatively late consequence of Aβ aggregation in Alzheimer's disease. When pathogenic Aβ seeds begin to form, propagate and spread is not known, nor are they biochemically defined. We tested various antibodies for their ability to neutralize Aβ seeds before Aβ deposition becomes detectable in Aβ precursor protein-transgenic mice.
View Article and Find Full Text PDFExtracellular deposition of amyloid β-protein (Aβ) in amyloid plaques and intracellular accumulation of abnormally phosphorylated τ-protein (p-τ) in neurofibrillary tangles (NFTs) represent pathological hallmark lesions of Alzheimer's disease (AD). Both lesions develop in parallel in the human brain throughout the preclinical and clinical course of AD. Nevertheless, it is not yet clear whether there is a direct link between Aβ and τ pathology or whether other proteins are involved in this process.
View Article and Find Full Text PDFObjective: Clinical trials targeting β-amyloid peptides (Aβ) for Alzheimer disease (AD) failed for arguable reasons that include selecting the wrong stages of AD pathophysiology or Aβ being the wrong target. Targeting Aβ to prevent cerebral amyloid angiopathy (CAA) has not been rigorously followed, although the causal role of Aβ for CAA and related hemorrhages is undisputed. CAA occurs with normal aging and to various degrees in AD, where its impact and treatment is confounded by the presence of parenchymal Aβ deposition.
View Article and Find Full Text PDFGABA receptors (GBRs) are key regulators of synaptic release but little is known about trafficking mechanisms that control their presynaptic abundance. We now show that sequence-related epitopes in APP, AJAP-1 and PIANP bind with nanomolar affinities to the N-terminal sushi-domain of presynaptic GBRs. Of the three interacting proteins, selectively the genetic loss of APP impaired GBR-mediated presynaptic inhibition and axonal GBR expression.
View Article and Find Full Text PDFThe beta-site amyloid precursor protein cleaving enzyme-1 (BACE-1) initiates the generation of amyloid-β (Aβ), and the amyloid cascade leading to amyloid plaque deposition, neurodegeneration, and dementia in Alzheimer's disease (AD). Clinical failures of anti-Aβ therapies in dementia stages suggest that treatment has to start in the early, asymptomatic disease states. The BACE-1 inhibitor CNP520 has a selectivity, pharmacodynamics, and distribution profile suitable for AD prevention studies.
View Article and Find Full Text PDFNew amino-1,4-oxazine derived BACE-1 inhibitors were explored and various synthetic routes developed. The binding mode of the inhibitors was elucidated by co-crystallization of 4 with BACE-1 and X-ray analysis. Subsequent optimization led to inhibitors with low double digit nanomolar activity in a biochemical and single digit nanomolar potency in a cellular assays.
View Article and Find Full Text PDFInnate immune memory is a vital mechanism of myeloid cell plasticity that occurs in response to environmental stimuli and alters subsequent immune responses. Two types of immunological imprinting can be distinguished-training and tolerance. These are epigenetically mediated and enhance or suppress subsequent inflammation, respectively.
View Article and Find Full Text PDFThe molecular architecture of amyloids formed in vivo can be interrogated using luminescent conjugated oligothiophenes (LCOs), a unique class of amyloid dyes. When bound to amyloid, LCOs yield fluorescence emission spectra that reflect the 3D structure of the protein aggregates. Given that synthetic amyloid-β peptide (Aβ) has been shown to adopt distinct structural conformations with different biological activities, we asked whether Aβ can assume structurally and functionally distinct conformations within the brain.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2017
Amyloid-β (Aβ) is thought to play an essential pathogenic role in Alzheimer´s disease (AD). A key enzyme involved in the generation of Aβ is the β-secretase BACE, for which powerful inhibitors have been developed and are currently in use in human clinical trials. However, although BACE inhibition can reduce cerebral Aβ levels, whether it also can ameliorate neural circuit and memory impairments remains unclear.
View Article and Find Full Text PDFLittle is known about the extent to which pathogenic factors drive the development of Alzheimer's disease (AD) at different stages of the long preclinical and clinical phases. Given that the aggregation of the β-amyloid peptide (Aβ) is an important factor in AD pathogenesis, we asked whether Aβ seeds from brain extracts of mice at different stages of amyloid deposition differ in their biological activity. Specifically, we assessed the effect of age on Aβ seeding activity in two mouse models of cerebral Aβ amyloidosis (APPPS1 and APP23) with different ages of onset and rates of progression of Aβ deposition.
View Article and Find Full Text PDFIntroduction: The inhibition of the β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is a main therapeutic approach for the treatment of Alzheimer's disease (AD). We previously reported an age-related increase of tau protein in the cerebrospinal fluid (CSF) of amyloid β (Aβ) precursor protein (APP) transgenic mice.
Methods: APP transgenic mice were treated with a potent BACE1 inhibitor.
Currently, several immunotherapies and BACE (Beta Site APP Cleaving Enzyme) inhibitor approaches are being tested in the clinic for the treatment of Alzheimer's disease. A crucial mechanism-related safety concern is the exacerbation of microhemorrhages, which are already present in the majority of Alzheimer patients. To investigate potential safety liabilities of long-term BACE inhibitor therapy, we used aged amyloid precursor protein (APP) transgenic mice (APP23), which robustly develop cerebral amyloid angiopathy.
View Article and Find Full Text PDFAn early event in Alzheimer's disease (AD) pathogenesis is the formation of extracellular aggregates of amyloid-β peptide (Aβ), thought to be initiated by a prion-like seeding mechanism. However, the molecular nature and location of the Aβ seeds remain rather elusive. Active Aβ seeds are found in crude homogenates of amyloid-laden brains and in the soluble fraction thereof.
View Article and Find Full Text PDFA majority of current disease-modifying therapeutic approaches for age-related neurodegenerative diseases target their characteristic proteopathic lesions (α-synuclein, Tau, Aβ). To monitor such treatments, fluid biomarkers reflecting the underlying disease process are crucial. We found robust increases of neurofilament light chain (NfL) in CSF and blood in murine models of α-synucleinopathies, tauopathy, and β-amyloidosis.
View Article and Find Full Text PDFUnlabelled: The aggregation of amyloid-β peptide (Aβ) in brain is an early event and hallmark of Alzheimer's disease (AD). We combined the advantages of in vitro and in vivo approaches to study cerebral β-amyloidosis by establishing a long-term hippocampal slice culture (HSC) model. While no Aβ deposition was noted in untreated HSCs of postnatal Aβ precursor protein transgenic (APP tg) mice, Aβ deposition emerged in HSCs when cultures were treated once with brain extract from aged APP tg mice and the culture medium was continuously supplemented with synthetic Aβ.
View Article and Find Full Text PDFFrontotemporal lobar degeneration (FTLD) is a neurodegenerative disorder, a major subset of which is characterized by the accumulation of abnormal forms of the protein tau, leading to impairments in motor functions as well as language and behavioral alterations. Tau58-2/B mice express human tau with the P301S mutation found in familial forms of FTLD in neurons. By assessing three age cohorts of Tau58-2/B mice in a comprehensive behavioral test battery, we found that the tauopathy animals showed age-dependent signs of impulsivity, decreased social exploration and executive dysfunction.
View Article and Find Full Text PDFBackground: Cerebral amyloid angiopathy (CAA) is characterized by vascular deposition of amyloid β (Aβ) with a higher incidence of cerebral microbleeds (cMBs) and spontaneous hemorrhage. Since statins are known for their benefit in vascular disease we tested for the effect on CAA.
Methods: APP23-transgenic mice received atorvastatin-supplemented food starting at the age of eight months (n = 13), 12 months (n = 7), and 16 months (n = 6), respectively.
Among the most promising approaches for treating Alzheimer's disease is immunotherapy with amyloid-β (Aβ)-targeting antibodies. Using in vivo two-photon imaging in mouse models, we found that two different antibodies to Aβ used for treatment were ineffective at repairing neuronal dysfunction and caused an increase in cortical hyperactivity. This unexpected finding provides a possible cellular explanation for the lack of cognitive improvement by immunotherapy in human studies.
View Article and Find Full Text PDFCerebral β-amyloidosis is induced by inoculation of Aβ seeds into APP transgenic mice, but not into App(-/-) (APP null) mice. We found that brain extracts from APP null mice that had been inoculated with Aβ seeds up to 6 months previously still induced β-amyloidosis in APP transgenic hosts following secondary transmission. Thus, Aβ seeds can persist in the brain for months, and they regain propagative and pathogenic activity in the presence of host Aβ.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is the most common form of dementia, the number of affected individuals is rising, with significant impacts for healthcare systems. Current symptomatic treatments delay, but do not halt, disease progression. Genetic evidence points to aggregation and deposition of amyloid-β (Aβ) in the brain being causal for the neurodegeneration and dementia typical of AD.
View Article and Find Full Text PDF