Background & Aims: In this study, adenoviral vectors encoding an antisense RNA complementary to the 5' non-coding region (5'NCR) of the HCV-genome were generated to inhibit HCV-RNA gene expression in cell culture and in vivo.
Methods: First and second-generation (with E4-deletion) adenoviruses encoding the HCV5'NCR in antisense direction (Ad-NCRas and Ad-E4del-NCRas) were generated. Inhibition of HCV gene expression was analyzed in hepatoma cells stably transfected with the HCV5'NCR cDNA fused to the firefly luciferase gene (NCRluc), as well as in the HCV subgenomic replicon (genotypes 1b and 2a) and the fully infectious HCV JFH-1 cell culture systems.
Background/aims: Four different ribozymes (Rz) targeting the hepatitis C virus (HCV) 5'-non-coding region (NCR) at nucleotide (nt) positions GUA 165 (Rz1), GUC 270 (Rz2), GUA 330 (Rz3) and GCA 348 (Rz1293) were compared for in vitro cleavage using a 455 nt HCV RNA substrate. The GUA 330 (Rz3) and GCA 348 (Rz1293) ribozymes, both targeting the HCV loop IV region, were found to be the most efficient, and were further analyzed in an in vitro translation system.
Methods: For this purpose RNA transcribed from a construct encoding a HCV-5'-NCR-luciferase fusion protein was used.
The oncofetal alpha-fetoprotein (AFP) is reexpressed in the majority of hepatocellular carcinomas and may be used as a target molecule for an immunotherapy or prophylaxis against this tumor. We investigated the potential of DNA vaccination with AFP-expressing plasmid DNA to induce an immune response against AFP-expressing tumor cells in DBA/2 mice. 62.
View Article and Find Full Text PDF