Sequence-specific cytidine to uridine (C-to-U) and adenosine to inosine editing tools can alter RNA and DNA sequences and utilize a hydrolytic deamination mechanism requiring an active site zinc ion and a glutamate residue. In plant organelles, DYW-PG domain containing enzymes catalyze C-to-U edits through the canonical deamination mechanism. Proteins developed from consensus sequences of the related DYW-KP domain family catalyze what initially appeared to be uridine to cytidine (U-to-C) edits leading to this investigation into the U-to-C editing mechanism.
View Article and Find Full Text PDFWe investigated the singlet oxygen quenching ability of several derivatives of trans-resveratrol which have been reported to have significant antioxidant ability, including photoprotective activity. We measured the total rate constants of singlet oxygen removal (k ) by the methylated resveratrol derivative 1,3-dimethoxy-5-[(E)-2-(4-methoxyphenyl)ethenyl]benzene, and the partially methylated resveratrol derivatives 4-((E)-2-(3,5-dimethoxyphenyl)ethenyl)phenol (pterostilbene), 5-[(E)-2-(4-methoxyphenyl)ethenyl]benzene-1,3-diol and (2R,3R)-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-2,3-dihydrochromen-4-one (dihydromyricetin). A protic solvent system results in higher k values, except for the completely methylated derivative.
View Article and Find Full Text PDFMetal thiolate complexes can act as photosensitizers for the generation of singlet oxygen, quenchers of singlet oxygen, and they may undergo chemical reactions with singlet oxygen leading to oxidized thiolate ligands. This review covers all of the chemical reactions of thiolate ligands with singlet oxygen (through early 2021). Since some of these reactions are self-sensitized photooxidations, singlet oxygen generation by metal complexes is also discussed.
View Article and Find Full Text PDFWe investigated the effect of the cation-π interaction on the susceptibility of a tryptophan model system toward interaction with singlet oxygen, that is, type II photooxidation. The model system consists of two indole units linked to a lariat crown ether to measure the total rate of removal of singlet oxygen by the indole units in the presence of sodium cations (i.e.
View Article and Find Full Text PDFWe investigated the chemistry of singlet oxygen with a cadmium-sulfur cluster, (MeN)[Cd(SPh)]. This cluster was used as a model for cadmium-sulfur nanoparticles. Such nanoparticles are often used in conjunction with photosensitizers (for singlet oxygen generation or dye-sensitized solar cells), and hence, it is important to determine if cadmium-sulfur moieties physically quench and/or chemically react with singlet oxygen.
View Article and Find Full Text PDFProduction of nanoscale materials often requires the use of toxic chemicals and complex synthetic procedures. A new scaffold has been explored for in situ synthesis of nanomaterials that utilizes natural biological systems in the form of plants, bacteria, fungi, algae and redox-imbalanced mammalian cells and systems. The latter approach has become popular in recent years and has shown some promising results in bioimaging of cancer, as well as inflammatory and neurodegenerative maladies.
View Article and Find Full Text PDFTimely detection is crucial for successful treatment of cancer. The current study describes a new approach that involves utilization of the tumor cell environment for bioimaging with in-situ biosynthesized nanoscale gold and iron probes and subsequent dissemination of Au-Fe nanoclusters from cargo exosomes within the circulatory system. We have isolated the Au-Fe cargo exosomes from the blood of the treated murine models after in situ biosyntheses from their respective pre-ionic solutions (HAuCl, FeCl), whereas NaSeO supplementation added into Au lethal effect.
View Article and Find Full Text PDFCancer treatment has a far greater chance of success if the neoplasm is diagnosed before the onset of metastasis to vital organs. Hence, cancer early diagnosis is extremely important and remains a major challenge in modern therapeutics. In this contribution, facile and new method for rapid multimodal tumor bioimaging is reported by using biosynthesized iron complexes and gold nanoclusters via simple introduction of AuCl and Fe ions.
View Article and Find Full Text PDFBackground: Tetra Sulphonatophenyl Porphyrin (TSPP) is well known photosensitizer for photodynamic therapy; nevertheless, its well-known adverse effects hamper its potential use. Recently, nano TiO2's potential role in biomedical has been defined for various disease theranostics, including cancer and other infections. Thus, in this contribution we have explored the possibility of utilizing TiO2 nanowhiskers as novel strategy to lower TSPP adverse effects both in vitro, and in vivo.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2015
Among the noble-metal clusters, very few reports about platinum clusters were used as bioimaging probes of tumors except as a reducing catalyst. It is first established herein that the biocompatible platinum nanoclusters are spontaneously biosynthesized by cancerous cells (i.e.
View Article and Find Full Text PDFSince Rheumatoid arthritis (RA) is one of the major human joint diseases with unknown etiology, the early diagnosis and treatment of RA remains a challenge. In this contribution we have explored the possibility to utilize novel nanocomposites of tetera suplhonatophenyl porphyrin (TSPP) with titanium dioxide (TiO2) nanowhiskers (TP) as effective bio-imaging and photodynamic therapeutic (PDT) agent for RA theranostics. Our observations demonstrate that TP solution PDT have an ameliorating effect on the RA by decreasing significantly the IL-17 and TNF-α level in blood serum and fluorescent imaging could enable us to diagnose the disease in subclinical stages and bio-mark the RA insulted joint.
View Article and Find Full Text PDFThe complex [Ru(bpy)2(ttma)](+) (bpy = 2,2'-bipyridine; ttma = 3-hydroxy-2-methyl-thiopyran-4-thionate, 1, has previously been shown to undergo an unusual C-H activation of the dithiomaltolato ligand upon outer-sphere oxidation. The reaction generated alcohol and aldehyde products 2 and 3 from C-H oxidation of the pendant methyl group. In this report, we demonstrate that the same products are formed upon photolysis of 1 in presence of mild oxidants such as methyl viologen, [Ru(NH3)6](3+) and [Co(NH3)5Cl](2+), which do not oxidize 1 in the dark.
View Article and Find Full Text PDFJ Biomed Nanotechnol
February 2014
During photodynamic therapy (PDT) of cancers, there are numerous side effects, accompanied by damage to normal cells/tissues caused by the abnormal elevation of reactive oxygen species (ROS). In this paper, we aim to provide an effective method to reduce the relevant side effects of PDT by using cerium oxide nanoparticles. The well-dispersed poly(vinyl pyrrolidone) stabilized cerium oxide nanoparticles were successfully synthesized by using a one-pot method at 60 degrees C in slightly alkaline environment.
View Article and Find Full Text PDFPhotochem Photobiol
June 2015
While cyclometalated complexes have been extensively studied for optoelectronic applications, these compounds also represent a relatively new class of photosensitizers for the production of singlet oxygen. Thus far, singlet oxygen generation from cyclometalated Ir and Pt complexes has been studied in detail. In this review, photophysical data for singlet oxygen generation from these complexes are presented, and the mechanism of (1) O2 generation is discussed, including evidence for singlet oxygen generation via an electron-transfer mechanism for some of cyclometalated Ir complexes.
View Article and Find Full Text PDFWe prepared and studied novel fluorescent nanocomposites based on gambogic acid (GA) and cadmium-tellurium (CdTe) quantum dots (CdTe QDs) modified with cysteamine for purpose of cancer cell labeling and combined treatment. The nanocomposites were denoted as GA-CdTe. Characterization results indicated that the CdTe QDs can readily bind onto cell plasma membranes and then be internalized into cancer cells for real-time labeling and tracing of human liver hepatocellular carcinoma cell line (HepG2) cells.
View Article and Find Full Text PDFLJ001 is a lipophilic thiazolidine derivative that inhibits the entry of numerous enveloped viruses at non-cytotoxic concentrations (IC50 ≤ 0.5 µM), and was posited to exploit the physiological difference between static viral membranes and biogenic cellular membranes. We now report on the molecular mechanism that results in LJ001's specific inhibition of virus-cell fusion.
View Article and Find Full Text PDFThe thiolato complex [platinum(II) (bipyridine)(N,S-aminoethanethiolate)](+)Ch(-) (1) undergoes sequential reactions with singlet oxygen to initially form the corresponding sulfenato complex [platinum(II) (bipyridine)(N,S(═O)-aminoethansulfenate)](+) (2) followed by a much slower reaction to the corresponding sulfinato complex. In contrast with many platinum dithiolato complexes, 1 does not produce any singlet oxygen, but its rate constant for singlet oxygen removal (k(T)) is quite large (3.2 × 10(7) M(-1) s(-1)) and chemical reaction accounts for ca.
View Article and Find Full Text PDFNanoconjugates composed of drug molecules encapsulated in quantum dots (QDs) attract enormous attention due to their promising bioimaging and biomedical applications. Here, the anticancer efficiency of potential pharmacophore agents (o-carborane (Cb), o-carborane-C-carboxylic acid (Cbac1), and o-carborane-C(1)C(2)-dicarboxylic acid (Cbac2) coupling with cadmium telluride QDs capped with cysteamine (CA-CdTe QDs)) have been explored. Compared with free CA-CdTe QDs, the composites consisting of Cbac1/Cbac2 and safe-dosage QDs can greatly improve the inhibition efficiency toward SMMC-7721 hepatocellular carcinoma cells with the aid of our real-time cell bioelectronic sensing system and the MTT assay.
View Article and Find Full Text PDFResveratrol (1) reacts with singlet oxygen by two major pathways: A [2+2] cycloaddition forming a transient dioxetane that cleaves into the corresponding aldehydes and a [4+2] cycloaddition forming an endoperoxide that, upon heating, undergoes a rearrangement to moracin M. The rate constant by which singlet oxygen is removed by 1 (k(T)) was determined by time-resolved infrared luminescence spectroscopy to be 1.5 × 10(6) M(-1) sec(-1) in CD(3)OD, smaller than previously reported values.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
April 2011
In this report, we describe the effect of conjugating o-carborane-C(1)C(2)-dicarboxylic acid (o-C2B10H10-C2O4H2, denoted as Cbac2) to cadmium telluride quantum dots (CdTe QDs) capped with cysteamine on the photophysics and cytotoxicity of the QDs. Cbac2 quenches the fluorescence intensity and induces a red shift of the fluorescence emission peak. Meanwhile, studies with a real time cell electronic sensing (RT-CES) system and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl (MTT) assay indicate that the combination of the carborane carboxylic acid derivative Cbac2 with relevant QDs can efficiently improve the inhibition efficiency for target cancer cells when compared with a single ligand or the CdTe QDs alone.
View Article and Find Full Text PDFCadmium telluride quantum dots (Cdte QDs) have received significant attention in biomedical research because of their potential in disease diagnosis and drug delivery. In this study, we have investigated the interaction mechanism and synergistic effect of 3-mercaptopropionic acid-capped Cdte QDs with the anti-cancer drug daunorubicin (DNR) on the induction of apoptosis using drug-resistant human hepatoma HepG2/ADM cells. Electrochemical assay revealed that Cdte QDs readily facilitated the uptake of the DNR into HepG2/ADM cells.
View Article and Find Full Text PDFLuminescent cyclometalated platinum(II) complexes, namely [Pt(Thpy)(PPh3)X]n+ (HThpy = 2-(2′-thienyl)pyridine; X = Cl− (1), n = 0; X = CH3CN (2), pyridine (3), n = 1) and [Pt(Thpy)(HThpy)Y]n+ (Y = Cl− (4), n = 0; Y = pyridine (5), n = 1), exhibit structured emission with peak maximum at ∼556 and 598 nm in degassed acetonitrile and with emission quantum yield and lifetime of up to 0.38 and 26 μs, respectively. These complexes are efficient photosensitizers of singlet oxygen with yields up to >90%.
View Article and Find Full Text PDFArylphosphines and dialkylbiarylphosphines react with singlet oxygen to form phosphine oxides and phosphinate esters. For mixed arylphosphines, the most electron-rich aryl group migrates to form the phosphinate, while for dialkylbiarylphosphines migration of the alkyl group occurs. Dialkylbiarylphosphines also yield arene epoxides, especially in electron-rich systems.
View Article and Find Full Text PDFPhotoluminescent semiconductor quantum dots (QDs) have received significant attention in biological and biomedical fields because of their attractive properties. In this contribution, we have explored and evaluated the utilization of water-soluble nanocrystal CdTe quantum dots (QDs) capped with negatively charged 3-mercapitalpropionic acid (MPA)-QDs to enhance the drug uptake into the target cancer cells and the efficiency of the biomarker and cancer treatments, by using the cytotoxicity evaluation, total internal reflection fluorescence microscopy, electrochemistry and UV-Vis absorption spectroscopy. Our results illustrate that the MPA-CdTe QDs could effectively facilitate the interaction of anticancer agent daunorubicin (DNR) with leukemia cells and the efficiency of biolabeling in cancer cells.
View Article and Find Full Text PDFChem Res Toxicol
January 2010
The application of quantum dots (QDs) in various biomedical areas requires detailed studies of their toxicity. We report a new strategy for probing the biocompatibility of these nanocrystals, namely, a dynamic investigation of cellular uptake images, cell growth curves, metabolic activity changes, and apoptosis aspects of cadmium telluride QDs capped with cysteamine (Cys-CdTe QDs) on human hepatocellular carcinoma SMMC-7721 cells. We used a real-time cell electronic sensing (RT-CES) system in combination with fluorescence microscopy, 3-(4,5-dimethyl-thiazol-zyl)-2,5-diphenyltetrazolium bromide assay, and flow cytometry (FCM) analysis.
View Article and Find Full Text PDF