State-of-the-art computational methods combined with common idealized structural models provide an incomplete understanding of experimental observations on real nanostructures, since manufacturing introduces unavoidable deviations from the design. We propose to close this knowledge gap by using the real structure of a manufactured nanostructure as input in computations to obtain a realistic comparison with measurements on the same nanostructure. We demonstrate this approach on the structure of a real inverse woodpile photonic bandgap crystal made from silicon, as previously obtained by synchrotron X-ray imaging.
View Article and Find Full Text PDFFunctional defects in periodic media confine waves-acoustic, electromagnetic, electronic, spin, etc.-in various dimensions, depending on the structure of the defect. While defects are usually modeled by a superlattice with a typical band-structure representation of energy levels, determining the confinement associated with a given band is highly nontrivial and no analytical method is known to date.
View Article and Find Full Text PDF