Publications by authors named "Matthias Ruckenbauer"

Time-resolved photoelectron spectroscopy is commonly employed with the intention to monitor electronic excited-state dynamics occurring in a neutral molecule. With the help of theory, we show that when excited-state processes occur on similar time scales the different relaxation pathways are completely obscured in the total photoionization signal recorded in the experiment. Using non-adiabatic molecular dynamics and Dyson norms, we calculate the photoionization signal of cytosine and disentangle the transient contributions originating from the different deactivation pathways of its tautomers.

View Article and Find Full Text PDF

We study strong-field molecular ionization as a function of pulse duration. Experimental measurements of the photoelectron yield for a number of molecules reveal competition between different ionization continua (cationic states) which depends strongly on pulse duration. Surprisingly, in the limit of short pulse duration, we find that a single ionic continuum dominates the yield, whereas multiple continua are produced for longer pulses.

View Article and Find Full Text PDF

Ground- and excited-state UV photoelectron spectra of thiouracils (2-thiouracil, 4-thiouracil, and 2,4-dithiouracil) have been simulated using multireference configuration interaction calculations and Dyson norms as a measure for the photoionization intensity. Except for a constant shift, the calculated spectrum of 2-thiouracil agrees very well with experiment, while no experimental spectra are available for the two other compounds. For all three molecules, the photoelectron spectra show distinct bands due to ionization of the sulphur and oxygen lone pairs and the pyrimidine π system.

View Article and Find Full Text PDF

A new algorithm for the computation of the overlap between many-electron wave functions is described. This algorithm allows for the extensive use of recurring intermediates and thus provides high computational efficiency. Because of the general formalism employed, overlaps can be computed for varying wave function types, molecular orbitals, basis sets, and molecular geometries.

View Article and Find Full Text PDF

The nonadiabatic photodynamics of the all-trans-2,4-pentadiene-iminium cation (protonated Schiff base 3, PSB3) and the all-trans-3-methyl-2,4-pentadiene-iminium cation (MePSB3) were investigated in the gas phase and in polar (aqueous) and nonpolar (n-hexane) solutions by means of surface hopping using a multireference configuration-interaction (MRCI) quantum mechanical/molecular mechanics (QM/MM) level. Spectra, lifetimes for radiationless deactivation to the ground state, and structural and electronic parameters are compared. A strong influence of the polar solvent on the location of the crossing seam, in particular in the bond length alternation (BLA) coordinate, is found.

View Article and Find Full Text PDF

Following up on our recent study of ultrafast charge separation at oligothiophene-fullerene interfaces [H. Tamura, I. Burghardt, and M.

View Article and Find Full Text PDF

Non-adiabatic on-the-fly dynamics simulations of the photodynamics of formamide in water and n-hexane were performed using a QM/MM approach. It was shown that steric restrictions imposed by the solvent cage do not have an influence on the initial motion which leads to the lowest energy conical intersection seam. The initial deactivation in water is faster than in n-hexane and in the gas phase.

View Article and Find Full Text PDF

Ab initio surface hopping dynamics calculations were performed to study the photophysical behavior of cytosine and guanine embedded in DNA using a quantum mechanical/molecular mechanics (QM/MM) approach. It was found that the decay rates of photo excited cytosine and guanine were affected in a completely different way by the hydrogen bonding to the DNA environment. In case of cytosine, the geometrical restrictions exerted by the hydrogen bonds did not influence the relaxation time of cytosine significantly due to the generally small cytosine ring puckering required to access the crossing region between excited and ground state.

View Article and Find Full Text PDF

The nonadiabatic deactivation of trans-azomethane starting from the nπ* state has been investigated in gas phase, water, and n-hexane using an on-the-fly surface-hopping method. A quantum mechanical/molecular mechanics (QM/MM) approach was used employing a flexible quantum chemical level for the description of electronically excited states and bond dissociation (generalized valence bond perfect-pairing complete active space). The solvent effect on the lifetime and structural parameters of azomethane was investigated in detail.

View Article and Find Full Text PDF

The short-time photodynamics (2 ps) of formamide embedded into an Ar matrix starting from the low-lying singlet excited S(1) (n(0)π*) and S(2) (ππ*) states were explored using a nonadiabatic photodynamics QM/MM approach. The interaction between formamide and the Ar matrix is taken into account at the MM level by means of Lennard-Jones potentials. This is the first example of exploring photodissociation of formamide with full nonadiabatic dynamics in a matrix and it nicely illustrates importance of considering environmental effects on photodissociation behavior of the peptide bond.

View Article and Find Full Text PDF

A new implementation of nonadiabatic excited-state dynamics using hybrid methods is presented. The current approach is aimed at the simulation of photoexcited molecules in solution. The chromophore is treated at the ab initio level, and its interaction with the solvent is approximated by point charges within the electrostatic embedding approach and by a Lennard-Jones potential for the nonbonded interactions.

View Article and Find Full Text PDF

Nonadiabatic photodynamical simulations of 4-aminopyrimidine (4-APy) used as a model for adenine were performed by embedding it between two stacking methyl-guanine (mGua) molecules to determine the effect of spatial restrictions on the ultrafast photodeactivation mechanism of this nucleobase. A hybrid multiconfigurational ab initio/molecular mechanical approach in combination with surface hopping was used. During the dynamics the formation of a significant fraction of intrastrand hydrogen bonding from 4-APy to mGua above and below is observed.

View Article and Find Full Text PDF

The internal conversion and hot ground-state dynamics of trans- and cis-azomethane starting in the S(1) state have been investigated by nonadiabatic ab initio surface hopping dynamics using MCSCF-GVB-CAS and MRCISD methods and by determining energy minima and saddle points, minima on the crossing seam, and minimum energy pathways on the ground and first excited-state surfaces. The lifetimes and photoproducts from the dynamics simulations, geometric properties, excitation energies of selected stationary points and minimum energy pathways between them are reported. Our results favor a statistical model with trans-AZM moving to the ground-state minima before the first CN dissociation takes place.

View Article and Find Full Text PDF

Multireference ab initio dynamics simulations have become available as a tool for the investigation of photochemical processes, mainly for those related to nonadiabatic phenomena taking place in the sub-picosecond time scale. For organic molecules, these phenomena are in many cases deeply dependent on the relaxation of the photoexcited pi-system. We review the latest contributions of our group to this subject and report new results for systems studied previously, grouping them in single pi bonds, chains and aromatic rings.

View Article and Find Full Text PDF

We present a model combining ab initio concepts and molecular dynamics simulations for a more realistic treatment of complex adsorption processes. The energy, distance, and orientation of water molecules adsorbed on stoichiometric and reduced rutile TiO(2)(110) surfaces at 140 K are studied via constant temperature molecular dynamics simulations. From ab initio calculations relaxed atomic geometries for the surface and the most probable adsorption sites were derived.

View Article and Find Full Text PDF