Publications by authors named "Matthias Rohrbeck"

Viral myocarditis is pathologically associated with RNA viruses such as coxsackievirus B3 (CVB3), or more recently, with SARS-CoV-2, but despite intensive research, clinically proven treatment is limited. Here, by use of a transgenic mouse strain (TG) containing a CVB3ΔVP0 genome we unravel virus-mediated cardiac pathophysiological processes in vivo and in vitro. Cardiac function, pathologic ECG alterations, calcium homeostasis, intracellular organization and gene expression were significantly altered in transgenic mice.

View Article and Find Full Text PDF

Introduction: Coxsackievirus B3 (CVB3) is known to induce acute and chronic myocarditis. Most infections are clinically unapparent but some patients suffer from ventricular arrhythmias (VA) and sudden cardiac death (SCD). Studies showed that acute CVB3 infection may cause impaired function of cardiac ion channels, creating a proarrhythmic substrate.

View Article and Find Full Text PDF

Infections with coxsackieviruses of type B (CVBs), which are known to induce severe forms of acute and chronic myocarditis, are often accompanied by ventricular arrhythmias and sudden cardiac death. The mechanisms underlying the development of virus-induced, life-threatening arrhythmias, which are phenotypically similar to those observed in patients having functionally impaired cardiac ion channels, remain, however, enigmatic. In the present study, we show, for the first time, modulating time-dependent effects of CVB3 on the cardiac ion channels KCNQ1, hERG1, and Cav1.

View Article and Find Full Text PDF