We present an analytically solvable model for correlated electrons, which is able to capture the major Fermi surface modifications occurring in both hole- and electron-doped cuprates as a function of doping. The proposed Hamiltonian qualitatively reproduces the results of numerically demanding many-body calculations, here obtained using the dynamical vertex approximation. Our analytical theory provides a transparent description of a precise mechanism, capable of driving the formation of disconnected segments along the Fermi surface (the highly debated "Fermi arcs"), as well as the opening of a pseudogap in hole and electron doping.
View Article and Find Full Text PDF