In addition to the electric field E(r), the associated magnetic field H(r) and current density J(r) characterize any electromagnetic device, providing insight into antenna coupling and mutual impedance. We demonstrate the optical analogue of the radio frequency vector network analyzer implemented in interferometric homodyne scattering-type scanning near-field optical microscopy for obtaining E(r), H(r), and J(r). The approach is generally applicable and demonstrated for the case of a linear coupled-dipole antenna in the midinfrared spectral region.
View Article and Find Full Text PDFThe optical local-field enhancement on nanometer length scales provides the basis for plasmonic metal nanostructures to serve as molecular sensors and as nanophotonic devices. However, particle morphology and the associated surface plasmon resonance alone do not uniquely reflect the important details of the local field distribution. Here, we use interferometric homodyne tip-scattering near-field microscopy for plasmonic near-field imaging of crystalline triangular silver nanoprisms.
View Article and Find Full Text PDF