To sample rare events, dissipation-corrected targeted molecular dynamics (dcTMD) applies a constant velocity constraint along a one-dimensional reaction coordinate , which drives an atomistic system from an initial state into a target state. Employing a cumulant approximation of Jarzynski's identity, the free energy Δ() is calculated from the mean external work and dissipated work of the process. By calculating the friction coefficient Γ() from the dissipated work, in a second step, the equilibrium dynamics of the process can be studied by propagating a Langevin equation.
View Article and Find Full Text PDFProtein-ligand (un)binding simulations are a recent focus of biased molecular dynamics simulations. Such binding and unbinding can occur via different pathways in and out of a binding site. Here, we present a theoretical framework on how to compute kinetics along separate paths and on how to combine the path-specific rates into global binding and unbinding rates for comparison with experimental results.
View Article and Find Full Text PDFAllosteric communication between distant protein sites represents a key mechanism of biomolecular regulation and signal transduction. Compared to other processes such as protein folding, however, the dynamical evolution of allosteric transitions is still not well understood. As an example of allosteric coupling between distant protein regions, we consider the global open-closed motion of the two domains of T4 lysozyme, which is triggered by local motion in the hinge region.
View Article and Find Full Text PDFThe friction coefficient of fluids may become a function of the velocity at increased external driving. This non-Newtonian behavior is of general theoretical interest and of great practical importance, for example, for the design of lubricants. Although the effect has been observed in large-scale atomistic simulations of bulk liquids, its theoretical formulation and microscopic origin are not well understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2020
While allostery is of paramount importance for protein regulation, the underlying dynamical process of ligand (un)binding at one site, resulting time evolution of the protein structure, and change of the binding affinity at a remote site are not well understood. Here the ligand-induced conformational transition in a widely studied model system of allostery, the PDZ2 domain, is investigated by transient infrared spectroscopy accompanied by molecular dynamics simulations. To this end, an azobenzene-derived photoswitch is linked to a peptide ligand in a way that its binding affinity to the PDZ2 domain changes upon switching, thus initiating an allosteric transition in the PDZ2 domain protein.
View Article and Find Full Text PDFPrincipal component analysis (PCA) represents a standard approach to identify collective variables {x} = x, which can be used to construct the free energy landscape ΔG(x) of a molecular system. While PCA is routinely applied to equilibrium molecular dynamics (MD) simulations, it is less obvious as to how to extend the approach to nonequilibrium simulation techniques. This includes, e.
View Article and Find Full Text PDF