Publications by authors named "Matthias Pillath-Eilers"

Article Synopsis
  • Acid sphingomyelinase (ASM) inhibitors, like amitriptyline, aid in recovering from post-stroke depression and enhance neurological recovery through neurorestorative effects in stroke models.
  • The study revealed that amitriptyline boosts the formation of mitochondrial reactive oxygen species (ROS) in both human endothelial cells and mice models, which plays a key role in its ability to promote angiogenesis.
  • Furthermore, amitriptyline triggers a metabolic reprogramming in endothelial cells that reduces harmful stress while encouraging protective responses, with the antioxidant heme oxygenase-1 being crucial for mediating its angiogenic effects.
View Article and Find Full Text PDF

Astrocytic responses are critical for the maintenance of neuronal networks in health and disease. In stroke, reactive astrocytes undergo functional changes potentially contributing to secondary neurodegeneration, but the mechanisms of astrocyte-mediated neurotoxicity remain elusive. Here, we investigated metabolic reprogramming in astrocytes following ischemia-reperfusion in vitro, explored their role in synaptic degeneration, and verified the key findings in a mouse model of stroke.

View Article and Find Full Text PDF

Cellular responses in glia play a key role in regulating brain remodeling post-stroke. However, excessive glial reactivity impedes post-ischemic neuroplasticity and hampers neurological recovery. While damage-associated molecular patterns and activated microglia were shown to induce astrogliosis, the molecules that restrain astrogliosis are largely unknown.

View Article and Find Full Text PDF

Astrocytic networks are critically involved in regulating the activity of neuronal networks. However, a comprehensive and ready-to-use data analysis tool for investigating functional interactions between the astrocytes is missing. We developed the novel software package named "Astral" to analyse intercellular communication in astrocytic networks based on live-cell calcium imaging.

View Article and Find Full Text PDF