Publications by authors named "Matthias Pfender"

Nuclear magnetic resonance (NMR) of single spins have recently been detected by quantum sensors. However, the spectral resolution has been limited by the sensor's relaxation to a few kHz at room temperature. This can be improved by using quantum memories, at the expense of sensitivity.

View Article and Find Full Text PDF

In nanoscale metrology, dissipation of the sensor limits its performance. Strong dissipation has a negative impact on sensitivity, and sensor-target interaction even causes relaxation or dephasing of the latter. The weak dissipation of nitrogen-vacancy (NV) sensors in room temperature diamond enables detection of individual target nuclear spins, yet limits the spectral resolution of nuclear magnetic resonance (NMR) spectroscopy to several hundred Hertz, which typically prevents molecular recognition.

View Article and Find Full Text PDF
Article Synopsis
  • Solid-state spin systems, like nitrogen-vacancy (NV) centers in diamond and phosphorus dopants in silicon, show great potential for quantum information processing due to their unique spin properties.
  • The study focuses on the positively charged NV center, which lacks an electron spin and is optically inactive, providing a better environment for nuclear spin coherence.
  • By using nanometer scale gate electrodes, researchers managed to increase nuclear spin coherence times fourfold and enable individual addressability by modifying the optical response of single nodes.
View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) spectroscopy is a key analytical technique in chemistry, biology, and medicine. However, conventional NMR spectroscopy requires an at least nanoliter-sized sample volume to achieve sufficient signal. We combined the use of a quantum memory and high magnetic fields with a dedicated quantum sensor based on nitrogen vacancy centers in diamond to achieve chemical shift resolution in H and F NMR spectroscopy of 20-zeptoliter sample volumes.

View Article and Find Full Text PDF

Magnetic sensing and imaging instruments are important tools in biological and material sciences. There is an increasing demand for attaining higher sensitivity and spatial resolution, with implementations using a single qubit offering potential improvements in both directions. In this article we describe a scanning magnetometer based on the nitrogen-vacancy center in diamond as the sensor.

View Article and Find Full Text PDF

The application of masers is limited by its demanding working conditions (high vacuum or low temperature). A room-temperature solid-state maser is highly desirable, but the lifetimes of emitters (electron spins) in solids at room temperature are usually too short (∼ns) for population inversion. Masing from pentacene spins in p-terphenyl crystals, which have a long spin lifetime (∼0.

View Article and Find Full Text PDF

Magnetic resonance with ensembles of electron spins is commonly performed around 10 GHz, but also at frequencies above 240 GHz and in corresponding magnetic fields of over 9 T. However, experiments with single electron and nuclear spins so far only reach into frequency ranges of several 10 GHz, where existing coplanar waveguide structures for microwave (MW) delivery are compatible with single spin readout techniques (e.g.

View Article and Find Full Text PDF

We experimentally demonstrate precision addressing of single-quantum emitters by combined optical microscopy and spin resonance techniques. To this end, we use nitrogen vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers, we are able to simultaneously perform sub-diffraction-limit imaging and optically detected spin resonance (ODMR) measurements on NV spins.

View Article and Find Full Text PDF

For many applications of the nitrogen-vacancy (NV) center in diamond, the understanding and active control of its charge state is highly desired. In this work, we demonstrate the reversible manipulation of the charge state of a single NV center from NV(-) across NV(0) to a nonfluorescent, dark state by using an all-diamond in-plane gate nanostructure. Applying a voltage to the in-plane gate structure can influence the energy band bending sufficiently for charge state conversion of NV centers.

View Article and Find Full Text PDF