Publications by authors named "Matthias Ober"

Commercial electrowetting-based liquid lenses are optical devices containing two immiscible liquids as an optical medium. The first phase is a droplet of a high refractive index oil phase placed in a ring-shaped chassis. The second phase is electrically conductive and has a similar density over a wide temperature range.

View Article and Find Full Text PDF

Background: Sulfoxaflor, a new insect control agent developed by Dow AgroSciences, exhibits broad-spectrum control of many sap-feeding insect pests, including aphids, whiteflies, leafhoppers, planthoppers and lygus bugs. During the development of sulfoxaflor, structure-activity relationship (SAR) exploration of the sulfoximine functional group revealed that the nature of the sulfoximine nitrogen substituent significantly affects insecticidal acitivity. As part of the investigation to probe the various electronic, steric and lipophilic parameters at this position, a series of N-heterocyclic sulfoximines were synthesized and tested for bioactivity against green peach aphid.

View Article and Find Full Text PDF

Fpg is a bacterial base excision repair enzyme that removes oxidized purines from DNA. This work shows that Fpg and its eukaryote homolog Ogg1 recognize with high affinity FapydG and bulky N7-benzyl-FapydG (Bz-FapydG). The comparative crystal structure analysis of stable complexes between Fpg and carbocyclic cFapydG or Bz-cFapydG nucleoside-containing DNA provides the molecular basis of the ability of Fpg to bind both lesions with the same affinity and to differently process them.

View Article and Find Full Text PDF

The mechanism of action of platinum-based anticancer drugs such as cis-diamminedichloroplatinum(II), or cisplatin, involves three early steps: cell entry, drug activation, and target binding. A major target in the cell, responsible for the anticancer activity, is nuclear DNA, which is packaged in nucleosomes that comprise chromatin. It is important to understand the nature of platinum-DNA interactions at the level of the nucleosome.

View Article and Find Full Text PDF

The oxidative DNA lesion, FaPydG rapidly anomerizes to form a mixture of the alpha and beta anomer. To investigate the mutagenic potential of both forms, we prepared stabilized bioisosteric analogues of both configurational isomers and incorporated them into oligonucleotides. These were subsequently used for thermodynamic melting-point studies and for primer-extension experiments.

View Article and Find Full Text PDF

Cisplatin and carboplatin are used successfully to treat various types of cancer. The drugs target the nucleosomes of cancer cells and form intrastrand DNA cross-links that are located in the major groove. We constructed two site-specifically modified nucleosomes containing defined intrastrand cis-{Pt(NH3)2}(2+) 1,3-d(GpTpG) cross-links.

View Article and Find Full Text PDF

The 2,6-diamino-4-hydroxy-5-formamidopyrimidine of 2'-deoxyguanosine (FaPydG) is one of the major DNA lesions found after oxidative stress in cells. To clarify the base pairing and coding potential of this major DNA lesion with the aim to estimate its mutagenic effect, we prepared oligonucleotides containing a cyclopentane based analogue of the DNA lesion (cFaPydG). In addition, oligonucleotides containing the cyclopentane analogue of 2'-deoxyguanosine (cdG), and oligonucleotides containing 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were synthesized.

View Article and Find Full Text PDF

Aerobic respiration generates reactive oxygen species that can damage guanine residues and lead to the production of 8-oxoguanine (8oxoG), the major mutagenic oxidative lesion in the genome. Oxidative damage is implicated in ageing and cancer, and its prevalence presents a constant challenge to DNA polymerases that ensure accurate transmission of genomic information. When these polymerases encounter 8oxoG, they frequently catalyse misincorporation of adenine in preference to accurate incorporation of cytosine.

View Article and Find Full Text PDF

Formamidopyrimidine-DNA glycosylase (Fpg) is a DNA repair enzyme that excises oxidized purines such as 7,8-dihydro-8-oxoguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) from damaged DNA. Here, we report the crystal structure of the Fpg protein from Lactococcus lactis (LlFpg) bound to a carbocyclic FapydG (cFapydG)-containing DNA. The structure reveals that Fpg stabilizes the cFapydG nucleoside into an extrahelical conformation inside its substrate binding pocket.

View Article and Find Full Text PDF