Thyroid hormones (TH) play critical roles during nervous system development and patients carrying coding variants of MCT8 (monocarboxylate transporter 8) or THRA (thyroid hormone receptor alpha) present a spectrum of neurological phenotypes resulting from perturbed local TH action during early brain development. Recently, human cerebral organoids (hCOs) emerged as powerful in vitro tools for disease modelling recapitulating key aspects of early human cortex development. To begin exploring prospects of this model for thyroid research, we performed a detailed characterization of the spatiotemporal expression of MCT8 and THRA in developing hCOs.
View Article and Find Full Text PDFThe X-linked Allan-Herndon-Dudley syndrome (AHDS) is characterized by severely impaired psychomotor development and is caused by mutations in the SLC16A2 gene encoding the thyroid hormone transporter MCT8 (monocarboxylate transporter 8). By targeting exon 3 of SLC16A2 using CRISPR/Cas9 with single-stranded oligodeoxynucleotides as homology-directed repair templates, we introduced the AHDS patient missense variant G401R and a novel knock-out deletion variant (F400Sfs*17) into the male healthy donor hiPSC line BIHi001-B. We successfully generated cerebral organoids from these genome-edited lines, demonstrating the utility of the novel lines for modelling the effects of MCT8-deficency on human neurodevelopment.
View Article and Find Full Text PDFBackground: Primary mesenchymal stem cells (MSCs) are fraught with aging-related shortfalls. Human-induced pluripotent stem cell (iPSC)-derived MSCs (iMSCs) have been shown to be a useful clinically relevant source of MSCs that circumvent these aging-associated drawbacks. To date, the extent of the retention of aging-hallmarks in iMSCs differentiated from iPSCs derived from elderly donors remains unclear.
View Article and Find Full Text PDFGunn rats bear a mutation within the uridine diphosphate glucuronosyltransferase-1a1 () gene resulting in high serum bilirubin levels as seen in Crigler-Najjar syndrome. In this study, the Gunn rat was used as an animal model for heritable liver dysfunction. Induced mesenchymal stem cells (iMSCs) derived from embryonic stem cells (H1) and induced pluripotent stem cells were transplanted into Gunn rats after partial hepatectomy.
View Article and Find Full Text PDFHuman bone mesenchymal stromal cells derived from fetal femur 55 days post-conception were reprogrammed to induced pluripotent stem cells using episomal plasmid-based expression of OCT4, SOX2, NANOG, LIN28, SV40LT, KLF4 and c-MYC and supplemented with the following pathway inhibitors - TGFβ receptor inhibitor (A-83-01), MEK inhibitor (PD325901), GSK3β inhibitor (CHIR99021) and ROCK inhibitor (HA-100). Successful induction of pluripotency in two iPS-cell lines was demonstrated in vitro and by the Pluritest.
View Article and Find Full Text PDFAn induced pluripotent stem cell line was generated from primary human bone marrow derived mesenchymal stromal cells of a 74 year old donor using retroviruses harboring OCT4, SOX2, KLF4 and c-MYC in combination with the following inhibitors TGFβ receptor-SB 431542, MEK-PD325901, and p53-Pifithrin α. Pluripotency was confirmed both in vitro and in vivo.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is a complex, irreversible neurodegenerative disorder. At present there are neither reliable markers to diagnose AD at an early stage nor therapy. To investigate underlying disease mechanisms, induced pluripotent stem cells (iPSCs) allow the generation of patient-derived neuronal cells in a dish.
View Article and Find Full Text PDFHuman stromal (mesenchymal) stem cells (hMSCs) are multipotent stem cells with ability to differentiate into mesoderm-type cells e.g. osteoblasts and adipocytes and thus they are being introduced into clinical trials for tissue regeneration.
View Article and Find Full Text PDFSomatic cells reprogrammed into induced pluripotent stem cells (iPSCs) acquire features of human embryonic stem cells (hESCs) and thus represent a promising source for cellular therapy of debilitating diseases, such as age-related disorders. However, reprogrammed cell lines have been found to harbor various genomic alterations. In addition, we recently discovered that the mitochondrial DNA of human fibroblasts also undergoes random mutational events upon reprogramming.
View Article and Find Full Text PDFA shift from osteoblastogenesis to adipogenesis is one of the underlying mechanisms of decreased bone mass and increased fat during aging. We now uncover a new role for the transcription factor Fra-1 in suppressing adipogenesis. Indeed, Fra1 (Fosl1) transgenic (Fra1tg) mice, which developed progressive osteosclerosis as a result of accelerated osteoblast differentiation, also developed a severe general lipodystrophy.
View Article and Find Full Text PDF