Publications by authors named "Matthias Kronseder"

Molybdenum disulfide nanoribbons and nanotubes are quasi-1D semiconductors with strong spin-orbit interaction, a nanomaterial highly promising for quantum electronic applications. Here, it is demonstrated that a bismuth semimetal layer between the contact metal and this nanomaterial strongly improves the properties of the contacts. Two-point resistances on the order of 100 kΩ are observed at room temperature.

View Article and Find Full Text PDF

For many biomedical applications, material surfaces should not only prevent unspecific protein adsorption and bacterial attachment as in many other applications in the food, health, or marine industry, but they should also promote the adhesion of tissue cells. In order to take a first step toward the challenging development of protein and bacteria-repelling and cell-adhesion-promoting materials, polyamine and poly(amido amine) surface coatings with terminal amine groups and varying structure (dendrimer, oligomer, polymer) were immobilized on model surfaces via silane chemistry. Physicochemical analysis showed that all modifications are hydrophilic (contact angles <60°) and possess similar surface free energies (SFEs, ∼46-54 mN/m), whereas their amine group densities and zeta potentials at physiological conditions (pH 7.

View Article and Find Full Text PDF

We present a detailed study on the static magnetic properties of individual permalloy nanotubes (NTs) with hexagonal cross-sections. Anisotropic magnetoresistance (AMR) measurements and scanning transmission X-ray microscopy (STXM) are used to investigate their magnetic ground states and its stability. We find that the magnetization in zero applied magnetic field is in a very stable vortex state.

View Article and Find Full Text PDF

Magnetic skyrmions are topologically protected whirls that decay through singular magnetic configurations known as Bloch points. We used Lorentz transmission electron microscopy to infer the energetics associated with the topological decay of magnetic skyrmions far from equilibrium in the chiral magnet Fe Co Si. We observed that the lifetime τ of the skyrmions depends exponentially on temperature, [Formula: see text].

View Article and Find Full Text PDF