Lower motor neuron (LMN) damage results in denervation of the associated muscle targets and is a significant yet under-appreciated component of spinal cord injury (SCI). Denervated muscle undergoes a progressive degeneration and fibro-fatty infiltration that eventually renders the muscle non-viable unless reinnervated within a limited time window. The distal nerve deprived of axons also undergoes degeneration and fibrosis making it less receptive to axons.
View Article and Find Full Text PDFTranscutaneous spinal stimulation (TSS) studies rely on the depolarization of afferent fibers to provide input to the spinal cord; however, this has not been routinely ascertained. Thus, we aimed to characterize the types of responses evoked by TSS and establish paired-pulse ratio cutoffs that distinguish posterior root reflexes, evoked by stimulation of afferent nerve fibers, from motor responses, evoked by stimulation of efferent nerve fibers. Twelve neurologically intact participants (six women) underwent unipolar TSS (cathode over T11-12 spinal processes, anode paraumbilically) while resting supine.
View Article and Find Full Text PDFBackground: Spastic equinovarus foot (SEF) is a common dysfunctional foot posture after stroke that impairs balance and mobility. Selective tibial neurotomy (STN) is a simple but underutilized surgical option that can effectively address critical aspects of SEF and thereby provide enduring quality of life gains. There are few studies that examine both functional outcomes and patient satisfaction with this treatment option.
View Article and Find Full Text PDFNeuromodulation via spinal stimulation has been investigated for improving motor function and reducing spasticity after spinal cord injury (SCI) in humans. Despite the reported heterogeneity of outcomes, few investigations have attempted to discern commonalities among individual responses to neuromodulation, especially the impact of stimulation frequencies. Here, we examined how exposure to continuous lumbosacral transcutaneous spinal stimulation (TSS) across a range of frequencies affects robotic torques and EMG patterns during stepping in a robotic gait orthosis on a motorized treadmill.
View Article and Find Full Text PDFTranscutaneous spinal cord stimulation is a non-invasive method for neuromodulation of sensorimotor function. Its main mechanism of action results from the activation of afferent fibers in the posterior roots-the same structures as targeted by epidural stimulation. Here, we investigated the influence of sagittal spine alignment on the capacity of the surface-electrode-based stimulation to activate these neural structures.
View Article and Find Full Text PDFIncreased use of epidural Spinal Cord Stimulation (eSCS) for the rehabilitation of spinal cord injury (SCI) has highlighted the need for a greater understanding of the properties of reflex circuits in the isolated spinal cord, particularly in response to repetitive stimulation. Here, we investigate the frequency-dependence of modulation of short- and long-latency EMG responses of lower limb muscles in patients with SCI at rest. Single stimuli could evoke short-latency responses as well as long-latency (likely polysynaptic) responses.
View Article and Find Full Text PDFNoninvasive electrical stimulation targeting the posterior lumbosacral roots has been applied recently in reflexes studies and as a neuromodulation intervention for modifying spinal cord circuitry after an injury. Here, we characterized short-latency responses evoked by four bipolar electrode configurations placed longitudinally over the spinal column at different vertebral levels from L1 to T9. They were compared with the responses evoked by the standard unipolar (aka monopolar) electrode configuration (cathode at T11/12, anode over the abdominal wall).
View Article and Find Full Text PDFNeuromuscular electrical stimulation (NMES) is a widely used technique for clinical diagnostic, treatment, and research. Normally, it applies charge-balanced biphasic pulses, which several publications have reported to be less efficient than monophasic pulses. A good alternative is the use of interphase intervals (IPI) on biphasic pulses that allows to achieve similar responses than those evoked by monophasic stimulation.
View Article and Find Full Text PDFAge-related sarcopenia is characterized by a progressive loss of muscle mass with decline in specific force, having dramatic consequences on mobility and quality of life in seniors. The etiology of sarcopenia is multifactorial and underlying mechanisms are currently not fully elucidated. Physical exercise is known to have beneficial effects on muscle trophism and force production.
View Article and Find Full Text PDFMotor control after spinal cord injury is strongly depending on residual ascending and descending pathways across the lesion. The individually altered neurophysiology is in general based on still intact sublesional control loops with afferent sensory inputs linked via interneuron networks to efferent motor outputs. Partial or total loss of translesional control inputs reduces and alters the ability to perform voluntary movements and results in motor incomplete (residual voluntary control of movement functions) or motor complete (no residual voluntary control) spinal cord injury classification.
View Article and Find Full Text PDFPurpose Of Review: The Purpose of this review is to outline and explain the therapeutic use of electrical spinal cord stimulation (SCS) for modification of spinal motor output. Central functional stimulation provides afferent input to posterior root neurons and is applied to improve volitional movements, posture and their endurance, control spasticity, and improve bladder function or perfusion in the lower limbs. Clinical accomplishments strongly depend on each individual's physiological state and specific methodical adaptation to that physiological state.
View Article and Find Full Text PDFTranscutaneous stimulation of the human lumbosacral spinal cord is used to evoke spinal reflexes and to neuromodulate altered sensorimotor function following spinal cord injury. Both applications require the reliable stimulation of afferent posterior root fibers. Yet under certain circumstances, efferent anterior root fibers can be co-activated.
View Article and Find Full Text PDFNeuromuscular electrical stimulation (NMES) is an established method for functional restoration of muscle function, rehabilitation, and diagnostics. In this work, NMES was applied with surface electrodes placed on the anterior thigh to identify the main differences between current-controlled (CC) and voltage-controlled (VC) modes. Measurements of the evoked knee extension force and the myoelectric signal of quadriceps and hamstrings were taken during stimulation with different amplitudes, pulse widths, and stimulation techniques.
View Article and Find Full Text PDFInterest in transcutaneous electrical stimulation of the lumbosacral spinal cord is increasing in human electrophysiological and clinical studies. The stimulation effects on lower limb muscles depend on the depolarization of segmentally organized posterior root afferents and, thus, the rostro-caudal stimulation site. In previous studies, selective stimulation was achieved by varying the positions of single self-adhesive electrodes over the thoracolumbar spine.
View Article and Find Full Text PDFThe level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor-incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (tSCS) to modulate this central state of excitability during voluntary treadmill stepping in three motor-incomplete spinal cord-injured individuals. Stimulation was applied at 30 Hz with an intensity that generated tingling sensations in the lower limb dermatomes, yet without producing muscle reflex activity.
View Article and Find Full Text PDFThe loss in muscle mass coupled with a decrease in specific force and shift in fiber composition are hallmarks of aging. Training and regular exercise attenuate the signs of sarcopenia. However, pathologic conditions limit the ability to perform physical exercise.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
April 2014
The histologic features of aging muscle suggest that denervation contributes to atrophy, that immobility accelerates the process, and that routine exercise may protect against loss of motor units and muscle tissue. Here, we compared muscle biopsies from sedentary and physically active seniors and found that seniors with a long history of high-level recreational activity up to the time of muscle biopsy had 1) lower loss of muscle strength versus young men (32% loss in physically active vs 51% loss in sedentary seniors); 2) fewer small angulated (denervated) myofibers; 3) a higher percentage of fiber-type groups (reinnervated muscle fibers) that were almost exclusive of the slow type; and 4) sparse normal-size muscle fibers coexpressing fast and slow myosin heavy chains, which is not compatible with exercise-driven muscle-type transformation. The biopsies from the old physically active seniors varied from sparse fiber-type groupings to almost fully transformed muscle, suggesting that coexpressing fibers appear to fill gaps.
View Article and Find Full Text PDFA stimulator for neuromuscular electrical stimulation (NMES) was designed, especially suiting the requirements of elderly people with reduced cognitive abilities and diminished fine motor skills. The aging of skeletal muscle is characterized by a progressive decline in muscle mass, force, and condition. Muscle training with NMES reduces the degradation process.
View Article and Find Full Text PDFTraining of skilled movements leads to typical changes in motor evoked potentials (MEPs). To explore how such changes are related to motor performance and hand preference, a goal-directed movement task was implemented on a haptic interface. Right and left hands of right-handed subjects were trained in two sessions separated by a pause of 10 min.
View Article and Find Full Text PDF