Adiabatic decompression of paraquadrupolar materials has significant potential as a cryogenic cooling technology. We focus on TmVO[Formula: see text], an archetypal material that undergoes a continuous phase transition to a ferroquadrupole-ordered state at 2.15 K.
View Article and Find Full Text PDFThe adiabatic elastocaloric effect measures the temperature change of a given system with strain and provides a thermodynamic probe of the entropic landscape in the temperature-strain space. Here, we demonstrate that the DC bias strain-dependence of AC elastocaloric effect allows decomposition of the latter into symmetric (rotation-symmetry-preserving) and antisymmetric (rotation-symmetry-breaking) strain channels, using a tetragonal [Formula: see text]-electron intermetallic DyB[Formula: see text]C[Formula: see text]-whose antiferroquadrupolar order breaks local fourfold rotational symmetries while globally remaining tetragonal-as a showcase example. We capture the strain evolution of its quadrupolar and magnetic phase transitions using both singularities in the elastocaloric coefficient and its jumps at the transitions, and the latter we show follows a modified Ehrenfest relation.
View Article and Find Full Text PDFOne of the main developments in unconventional superconductivity in the past two decades has been the discovery that most unconventional superconductors form phase diagrams that also contain other strongly correlated states. Many systems of interest are therefore close to more than one instability, and tuning between the resultant ordered phases is the subject of intense research. In recent years, uniaxial pressure applied using piezoelectric-based devices has been shown to be a particularly versatile new method of tuning, leading to experiments that have advanced our understanding of the fascinating unconventional superconductor SrRuO (refs.
View Article and Find Full Text PDFThe elastocaloric effect (ECE) relates changes in entropy to changes in strain experienced by a material. As such, ECE measurements can provide valuable information about the entropy landscape proximate to strain-tuned phase transitions. For ordered states that break only point symmetries, bilinear coupling of the order parameter with strain implies that the ECE can also provide a window on fluctuations above the critical temperature and hence, in principle, can also provide a thermodynamic measure of the associated susceptibility.
View Article and Find Full Text PDFQuantum criticality may be essential to understanding a wide range of exotic electronic behavior; however, conclusive evidence of quantum critical fluctuations has been elusive in many materials of current interest. An expected characteristic feature of quantum criticality is power-law behavior of thermodynamic quantities as a function of a nonthermal tuning parameter close to the quantum critical point (QCP). Here, we observed power-law behavior of the critical temperature of the coupled nematic/structural phase transition as a function of uniaxial stress in a representative family of iron-based superconductors, providing direct evidence of quantum critical nematic fluctuations in this material.
View Article and Find Full Text PDFEngineering lattice thermal conductivity requires to control the heat carried by atomic vibration waves, the phonons. The key parameter for quantifying it is the phonon lifetime, limiting the travelling distance, whose determination is however at the limits of instrumental capabilities. Here, we show the achievement of a direct quantitative measurement of phonon lifetimes in a single crystal of the clathrate BaGeAu, renowned for its puzzling 'glass-like' thermal conductivity.
View Article and Find Full Text PDFNano-grained CoSb was prepared by melt-spinning and subsequent spark plasma sintering. The phonon thermal conductivity of skutterudites is known to be sensitive to the kind and the amount of guest atoms. Thus, unfilled CoSb can serve as model compound to study the impact of a nanostructure on the thermoelectric properties, especially the phonon thermal conductivity.
View Article and Find Full Text PDF