Objective: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of chronic liver disease, especially in patients with severe obesity. However, current mouse models for MASLD do not reflect the polygenetic background nor the metabolic changes in this population. Therefore, we investigated two novel mouse models of MASLD with a polygenetic background for the metabolic syndrome.
View Article and Find Full Text PDFBackground: Solid organ transplantation is hindered by immune-mediated chronic graft dysfunction and the side effects of immunosuppressive therapy. Regulatory T cells (Tregs) are crucial for modulating immune responses post-transplantation; however, the transfer of polyspecific Tregs alone is insufficient to induce allotolerance in rodent models.
Methods: To enhance the efficacy of adoptive Treg therapy, we investigated different immune interventions in the recipients.
Regulatory T cells (Tregs) are a specialized subgroup of T-cell lymphocytes that is crucial for maintaining immune homeostasis and preventing excessive immune responses. Depending on their differentiation route, Tregs can be subdivided into thymically derived Tregs (tTregs) and peripherally induced Tregs (pTregs), which originate from conventional T cells after extrathymic differentiation at peripheral sites. Although the regulatory attributes of tTregs and pTregs partially overlap, their modes of action, protein expression profiles, and functional stability exhibit specific characteristics unique to each subset.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is a neurodegenerative disease that remains uncured. Its pathogenesis is characterized by the formation of β-amyloid (Aβ) plaques. The use of antigen-specific regulatory T cells (Tregs) through adoptive transfer has shown promise for the treatment of many inflammatory diseases, although the effectiveness of polyspecific Tregs is limited.
View Article and Find Full Text PDFAdoptive transfer of antigen-specific regulatory T cells (Tregs) has shown promising results in the treatment of autoimmune diseases; however, the use of polyspecific Tregs has limited effects. However, obtaining a sufficient number of antigen-specific Tregs from patients with autoimmune disorders remains challenging. Chimeric antigen receptors (CARs) provide an alternative source of T cells for novel immunotherapies that redirect T cells independently of the MHC.
View Article and Find Full Text PDFThe forkhead family transcription factor (FOXP3) is an essential regulator for the development of regulatory T cells (Tregs) and orchestrates both suppressive function and Treg lineage identity. Stable expression of FOXP3 enables Tregs to maintain immune homeostasis and prevent autoimmunity. However, under pro-inflammatory conditions, FOXP3 expression in Tregs can become unstable, leading to loss of suppressive function and conversion into pathogenic T effector cells.
View Article and Find Full Text PDFBackground: Regulatory T cells (Tregs) play an important role in the maintenance of immune homeostasis and the establishment of immune tolerance. Since Tregs do not secrete endogenous IL-2, they are especially dependent on external IL-2. IL-2 deficiency leads to lower Treg numbers, instability of the Treg phenotype and loss of immune regulation.
View Article and Find Full Text PDFAutoimmune hepatitis (AIH) is a chronic immune-mediated inflammatory liver disease. It is known that AIH originates not from the spleen but from the liver itself. Nonetheless, most details of the etiology and pathophysiology are unknown.
View Article and Find Full Text PDFNonalcoholic steatohepatitis (NASH) is induced by steatosis and metabolic inflammation. While involvement of the innate immune response has been shown, the role of the adaptive immune response in NASH remains controversial. Likewise, the role of regulatory T cells (Treg) in NASH remains unclear although initial clinical trials aim to target these regulatory responses.
View Article and Find Full Text PDFBackground: Autoimmune hepatitis (AIH) is a chronic autoimmune inflammatory disease that usually requires lifelong immunosuppression. Frequent recurrences after the discontinuation of therapy indicate that intrahepatic immune regulation is not restored by current treatments. Studies of other autoimmune diseases suggest that temporary depletion of B cells can improve disease progression in the long term.
View Article and Find Full Text PDFDysregulation of glucose homeostasis plays a major role in the pathogenesis of non-alcoholic steatohepatitis (NASH) as it activates proinflammatory and profibrotic processes. Beneficial effects of antiglycemic treatments such as GLP-1 agonist or SGLT-2 inhibitor on NASH in patients with diabetes have already been investigated. However, their effect on NASH in a non-diabetic setting remains unclear.
View Article and Find Full Text PDFBackground & Aims: During chronic hepatitis B virus (HBV) infection, suppressed functionality of natural killer (NK) cells might contribute to HBV persistence but the underlying mechanisms remain elusive. A peculiar feature of HBV is the secretion of large amount of hepatitis B surface antigen (HBsAg). However, the effect of HBsAg quantities on NK cells is unclear.
View Article and Find Full Text PDFBackground: Treatment with direct-acting antivirals (DAAs) in patients with chronic hepatitis C infection leads to partial restoration of soluble inflammatory mediators (SIMs). In contrast, we hypothesized that early DAA treatment of acute hepatitis C virus (HCV) with DAAs may normalize most SIMs.
Methods: In this study, we made use of a unique cohort of acute symptomatic hepatitis C patients who cleared HCV with a 6-week course of ledipasvir/sofosbuvir.
Autoimmune hepatitis (AIH) is detected at a late stage in the course of the disease. Therefore, induction and etiology are largely unclear. It is controversial if the induction of autoimmunity occurs in the liver or in the spleen.
View Article and Find Full Text PDFAutoimmune hepatitis (AIH) is a chronic autoimmune inflammatory disease that usually requires life-long immunosuppression. Frequent relapses after discontinuation of therapy indicate that intrahepatic immune regulation is not restored by current therapies. As steroid therapy preferentially depletes intrahepatic regulatory T cell (Tregs), immune regulation might be re-established by increasing and functionally strengthening intrahepatic Tregs.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD) is quickly becoming the most common liver disease worldwide. Within the NAFLD spectrum, patients with nonalcoholic steatohepatitis (NASH) are at the highest risk of developing cirrhosis and disease progression to hepatocellular carcinoma. To date, therapeutic options for NASH patients have been ineffective, and therefore, new options are urgently needed.
View Article and Find Full Text PDFBackground And Aims: Autophagy is a critical process in cell survival and the maintenance of homeostasis. However, the implementation of therapeutic approaches based on autophagy mechanisms after liver damage is still challenging.
Methods: We used a hepatospecific Atg7-deficient murine model to address this question.
The priming of T cells in the liver is widely accepted. Nonetheless, it is controversial whether immune activation in autoimmune hepatitis (AIH) occurs in the liver or in the spleen. To address this issue, we splenectomized mice and induced experimental murine AIH (emAIH) with an adenovirus (Ad)-expressing formiminotransferase cyclodeaminase (FTCD).
View Article and Find Full Text PDFAdoptive immunotherapy with ex vivo expanded, polyspecific regulatory T cells (Tregs) is a promising treatment for graft-versus-host disease. Animal transplantation models used by us and others have demonstrated that the adoptive transfer of allospecific Tregs offers greater protection from graft rejection than that of polyclonal Tregs. This finding is in contrast to those of autoimmune models, where adoptive transfer of polyspecific Tregs had very limited effects, while antigen-specific Tregs were promising.
View Article and Find Full Text PDFFor the development of autoimmune hepatitis (AIH), genetic predisposition and environmental triggers are of major importance. Although experimental AIH can be induced in genetically susceptible mice, the low precursor frequency of autoreactive T cells hampers a deeper analysis of liver-specific T cells. Here, we established a system where the model antigen hemagglutinin (HA) is expressed exclusively in hepatocytes of Rosa26-HA mice following administration of a replication deficient adenovirus expressing Cre recombinase (Ad-Cre).
View Article and Find Full Text PDFRegulatory T cells (Tregs) are critical for the maintenance of immune homeostasis and self-tolerance and can be therapeutically used for prevention of unwanted immune responses such as allotransplant rejection. Tregs are characterized by expression of the transcription factor Foxp3, and recent work suggests that epigenetic imprinting of and other Treg-specific epigenetic signatures genes is crucial for the stabilization of both expression and immunosuppressive properties within Tregs. Lately, vitamin C was reported to enhance the activity of enzymes of the ten-eleven translocation family, thereby fostering the demethylation of and other Treg-specific epigenetic signatures genes in developing Tregs.
View Article and Find Full Text PDFAutoimmune hepatitis (AIH) is a chronic hepatitis with an increasing incidence. The majority of patients require life-long immunosuppression and incomplete treatment response is associated with a disease progression. An abnormal iron homeostasis or hyperferritinemia is associated with worse outcome in other chronic liver diseases and after liver transplantation.
View Article and Find Full Text PDFRegulatory T cells (Tregs) are potential immunotherapeutic candidates to induce transplantation tolerance. However, stability of Tregs still remains contentious and may potentially restrict their clinical use. Recent work suggested that epigenetic imprinting of Foxp3 and other Treg-specific signature genes is crucial for stabilization of immunosuppressive properties of Foxp3+ Tregs, and that these events are initiated already during early stages of thymic Treg development.
View Article and Find Full Text PDF