Publications by authors named "Matthias Grob"

Microbial-mediated Sb volatilization is a poorly understood part of the Sb biogeochemical cycle. This is mostly due to a lack of laboratory and field-deployable methods that are capable of quantifying low-level emissions of Sb from diffuse sources. In this study, we validated two methods using a HO -HNO liquid chemotrap and an activated coconut shell charcoal solid-phase trap, achieving an absolute limit of detection of 4.

View Article and Find Full Text PDF

We analyze the flow curves of a two-dimensional assembly of granular particles which are interacting via frictional contact forces. For packing fractions slightly below jamming, the fluid undergoes a large scale instability, implying a range of stress and strain rates where no stationary flow can exist. Whereas small systems were shown previously to exhibit hysteretic jumps between the low and high stress branches, large systems exhibit continuous shear thickening arising from averaging unsteady, spatially heterogeneous flows.

View Article and Find Full Text PDF

A two-dimensional dense fluid of frictional grains is shown to exhibit time-chaotic, spatially heterogeneous flow in a range of stress values, σ, chosen in the unstable region of s-shaped flow curves. Stress-controlled simulations reveal a phase diagram with reentrant stationary flow for small and large stress σ. In between, no steady flow state can be reached, instead the system either jams or displays time-dependent heterogeneous strain rates γ(r,t).

View Article and Find Full Text PDF

We propose a phase diagram for the shear flow of dry granular particles in two dimensions based on simulations and a phenomenological Landau theory for a nonequilibrium first-order phase transition. Our approach incorporates both frictional as well as frictionless particles. The most important feature of the frictional phase diagram is reentrant flow and a critical jamming point at finite stress.

View Article and Find Full Text PDF

When pulling a particle in a driven granular fluid with constant force Fex, the probe particle approaches a steady-state average velocity v. This velocity and the corresponding friction coefficient of the probe ζ=Fex/v are obtained within a schematic model of mode-coupling theory and compared to results from event-driven simulations. For small and moderate drag forces, the model describes the simulation results successfully for both the linear as well as the nonlinear region: The linear response regime (constant friction) for small drag forces is followed by shear thinning (decreasing friction) for moderate forces.

View Article and Find Full Text PDF