This study explores PROTACs for NLRP3, the key player in innate immunity. We utilised a thiophene analogue of the NLRP3 inhibitor MCC950 and employed CuAAC chemistry for the assembly of PROTACs bearing various linkers and recruiting three different E3 ligases. Compounds were evaluated in bidirectional thermal stability studies with NLRP3 and E3 ligases.
View Article and Find Full Text PDFThe cytosolic nucleic acid sensors RIG-I and cGAS induce type-I interferon (IFN)-mediated immune responses to RNA and DNA viruses, respectively. So far no connection between the two cytosolic pathways upstream of IKK-like kinase activation has been investigated. Here, we identify heterogeneous nuclear ribonucleoprotein M (hnRNPM) as a positive regulator of IRF3 phosphorylation and type-I IFN induction downstream of both cGAS and RIG-I.
View Article and Find Full Text PDFOrofacial clefting (OFC) is a frequent congenital anomaly and can occur either in the context of underlying syndromes or in isolation (nonsyndromic). The two common OFC phenotypes are cleft lip with/without cleft palate (CL/P) and cleft palate only (CPO). In this study, we searched for penetrant CL/P genes, by evaluating de novo copy number variants (CNV) from an exome sequencing dataset of 50 nonsyndromic patient-parent trios.
View Article and Find Full Text PDFThe CDK12 inhibitor SR-4835 promotes the proteasomal degradation of cyclin K, contingent on the presence of CDK12 and the CUL4-RBX1-DDB1 E3 ligase complex. The inhibitor displays molecular glue activity, which correlates with its enhanced ability to inhibit cell growth. This effect is achieved by facilitating the formation of a ternary complex that requires the small molecule SR-4835, CDK12, and the adaptor protein DDB1, leading to the subsequent ubiquitination and degradation of cyclin K.
View Article and Find Full Text PDFThe structure of human coagulation factor XIII (FXIII), a heterotetrameric plasma protransglutaminase that covalently cross-links preformed fibrin polymers, remains elusive until today. The heterotetrameric complex is composed of 2 catalytic FXIII-A and 2 protective FXIII-B subunits. Structural etiology underlying FXIII deficiency has so far been derived from crystallographic structures, all of which are currently available for the FXIII-A2 homodimer only.
View Article and Find Full Text PDFInflammasome activation results in the cleavage of gasdermin D (GSDMD) by pro-inflammatory caspases. The N-terminal domains (GSDMD) oligomerize and assemble pores penetrating the target membrane. As methods to study pore formation in living cells are insufficient, the order of conformational changes, oligomerization, and membrane insertion remained unclear.
View Article and Find Full Text PDFProkaryotic CRISPR-Cas immune systems detect and cleave foreign nucleic acids. In type III CRISPR-Cas systems, the Cas10 subunit of the activated recognition complex synthesizes cyclic oligoadenylates (cOAs), second messengers that activate downstream ancillary effector proteins. Once the viral attack has been weathered, elimination of extant cOA is essential to limit the antiviral response and to allow cellular recovery.
View Article and Find Full Text PDFCyclin-dependent kinase 7 (Cdk7) is required in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of transcription factor TFIIH. Cdk7 forms active complexes by associating with Cyclin H and Mat1, and is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations.
View Article and Find Full Text PDFCELSR3 codes for a planar cell polarity protein. We describe twelve affected individuals from eleven independent families with bi-allelic variants in CELSR3. Affected individuals presented with an overlapping phenotypic spectrum comprising central nervous system (CNS) anomalies (7/12), combined CNS anomalies and congenital anomalies of the kidneys and urinary tract (CAKUT) (3/12) and CAKUT only (2/12).
View Article and Find Full Text PDFNLRP3 is an intracellular sensor protein that detects a broad range of danger signals and environmental insults. Its activation results in a protective pro-inflammatory response designed to impair pathogens and repair tissue damage via the formation of the NLRP3 inflammasome. Assembly of the NLRP3 inflammasome leads to caspase 1-dependent secretory release of the pro-inflammatory cytokines IL-1β and IL-18 as well as to gasdermin d-mediated pyroptotic cell death.
View Article and Find Full Text PDFCyclin-dependent kinase 7 (Cdk7) occupies a central position in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of the general transcription factor TFIIH. Cdk7 forms an active complex upon association with Cyclin H and Mat1, and its catalytic activity is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the fully activated human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations.
View Article and Find Full Text PDFNuclear actin has been demonstrated to be essential for optimal transcription, but the molecular mechanisms and direct binding partner for actin in the RNA polymerase complex have remained unknown. By using purified proteins in a variety of biochemical assays, we demonstrate a direct and specific interaction between monomeric actin and Cdk9, the kinase subunit of the positive transcription elongation factor b required for RNA polymerase II pause-release. This interaction efficiently prevents actin polymerization, is not dependent on kinase activity of Cdk9, and is not involved with releasing positive transcription elongation factor b from its inhibitor 7SK snRNP complex.
View Article and Find Full Text PDFUnlabelled: Aberrations of the fibroblast growth factor receptor (FGFR) family members are frequently observed in metastatic urothelial cancer (mUC), and blocking the FGF/FGFR signaling axis is used as a targeted therapeutic strategy for treating patients. Erdafitinib is a pan-FGFR inhibitor, which has recently been approved by the FDA for mUC with FGFR2/3 alterations. Although mUC patients show initial response to erdafitinib, acquired resistance rapidly develops.
View Article and Find Full Text PDFHuman Gasdermin D (GSDMD) is a key mediator of pyroptosis, a pro-inflammatory form of cell death occurring downstream of inflammasome activation as part of the innate immune defence. Upon cleavage by inflammatory caspases in the cytosol, the N-terminal domain of GSDMD forms pores in the plasma membrane resulting in cytokine release and eventually cell death. Targeting GSDMD is an attractive way to dampen inflammation.
View Article and Find Full Text PDFHaemolytic disorders, such as sickle cell disease, are accompanied by the release of high amounts of labile heme into the intravascular compartment resulting in the induction of proinflammatory and prothrombotic complications in affected patients. In addition to the relevance of heme-regulated proteins from the complement and blood coagulation systems, activation of the TLR4 signalling pathway by heme was ascribed a crucial role in the progression of these pathological processes. Heme binding to the TLR4-MD2 complex has been proposed recently, however, essential mechanistic information of the processes at the molecular level, such as heme-binding kinetics, the heme-binding capacity and the respective heme-binding sites (HBMs) is still missing.
View Article and Find Full Text PDFRIG-I is a cytosolic receptor of viral RNA essential for the immune response to numerous RNA viruses. Accordingly, RIG-I must sensitively detect viral RNA yet tolerate abundant self-RNA species. The basic binding cleft and an aromatic amino acid of the RIG-I C-terminal domain(CTD) mediate high-affinity recognition of 5'triphosphorylated and 5'base-paired RNA(dsRNA).
View Article and Find Full Text PDFBackground: Short anagen hair (SAH) is a rare paediatric hair disorder characterized by a short anagen phase, an inability to grow long scalp hair and a negative psychological impact. The genetic basis of SAH is currently unknown.
Objectives: To perform molecular genetic investigations in 48 individuals with a clinical phenotype suggestive of SAH to identify, if any, the genetic basis of this condition.
Nonheme diiron monooxygenases (NHDMs) interact with nonribosomal peptide synthetase (NRPS) assembly lines to install β-hydroxylations at thiolation-domain-bound amino acids during nonribosomal peptide biosynthesis. The high potential of this enzyme family to diversify the products of engineered assembly lines is disproportionate to the currently small knowledge about their structures and mechanisms of substrate recognition. Here, we report the crystal structure of FrsH, the NHDM which catalyzes the β-hydroxylation of l-leucines during biosynthesis of the depsipeptide G protein inhibitor FR900359.
View Article and Find Full Text PDFRNA surveillance pathways detect and degrade defective transcripts to ensure RNA fidelity. We found that disrupted nuclear RNA surveillance is oncogenic. Cyclin-dependent kinase 13 () is mutated in melanoma, and patient-mutated accelerates zebrafish melanoma.
View Article and Find Full Text PDFCRISPR defence systems such as the well-known DNA-targeting Cas9 and the RNA-targeting type III systems are widespread in prokaryotes. The latter orchestrates a complex antiviral response that is initiated through the synthesis of cyclic oligoadenylates after recognition of foreign RNA. Among the large set of proteins that are linked to type III systems and predicted to bind cyclic oligoadenylates, a CRISPR-associated Lon protease (CalpL) stood out to us.
View Article and Find Full Text PDF