Adv Sci (Weinh)
February 2019
Cell-driven microtransport is one of the most prominent applications in the emerging field of biohybrid systems. While bacterial cells have been successfully employed to drive the swimming motion of micrometer-sized cargo particles, the transport capacities of motile adherent cells remain largely unexplored. Here, it is demonstrated that motile amoeboid cells can act as efficient and versatile trucks to transport microcargo.
View Article and Find Full Text PDFMethods Mol Biol
December 2017
In this chapter, we describe how to shield a patch of a cell membrane against extracellularly applied chemoattractant stimuli. Classical patch clamp methodology is applied to allow for controlled shielding of a membrane patch by measuring the seal resistivity. In Dictyostelium cells, a seal resistivity of 50 MΩ proved to be tight enough to exclude molecules from diffusing into the shielded membrane region.
View Article and Find Full Text PDFWe show systematic electrical impedance measurements of single motile cells on microelectrodes. Wild-type cells and mutant strains were studied that differ in their cell-substrate adhesion strength. We recorded the projected cell area by time-lapse microscopy and observed irregular oscillations of the cell shape.
View Article and Find Full Text PDFRecent work has demonstrated that the receptor-mediated signaling system in chemotactic amoeboid cells shows typical properties of an excitable system. Here, we delivered spatially confined stimuli of the chemoattractant cAMP to the membrane of differentiated Dictyostelium discoideum cells to investigate whether localized receptor stimuli can induce the spreading of excitable waves in the G-protein-dependent signal transduction system. By imaging the spatiotemporal dynamics of fluorescent markers for phosphatidylinositol (3,4,5)-trisphosphate (PIP₃), PTEN and filamentous actin, we observed that the activity of the signaling pathway remained spatially confined to the stimulated membrane region.
View Article and Find Full Text PDFThe membrane and actin cortex of a motile cell can autonomously differentiate into two states, one typical of the front, the other of the tail. On the substrate-attached surface of Dictyostelium discoideum cells, dynamic patterns of front-like and tail-like states are generated that are well suited to monitor transitions between these states. To image large-scale pattern dynamics independently of boundary effects, we produced giant cells by electric-pulse-induced cell fusion.
View Article and Find Full Text PDFCyclic GMP (cGMP) is a ubiquitous second messenger in eukaryotic cells. It is assumed to regulate the association of myosin II with the cytoskeleton of motile cells. When cells of the social amoeba Dictyostelium discoideum are exposed to chemoattractants or to increased osmotic stress, intracellular cGMP levels rise, preceding the accumulation of myosin II in the cell cortex.
View Article and Find Full Text PDFThis study uses an in vitro rd10 mouse model to quantify and compare the ability of the monopolar and the (concentric) bipolar electrode configurations for subretinal stimulation. To allow for results which can be directly compared an identical region of the retina was stimulated due to the circumstance that the bipolar electrode configuration allows also for monopolar stimulation, if the concentric counter-electrode is set potential-free (floating). A ganglion cell, located centrally over the bipolar electrode configuration was selected to extracellularly record action potentials during stimulation.
View Article and Find Full Text PDFFood-borne zoonoses have a major health impact in industrial countries. Campylobacter spp., Salmonella enterica, Yersinia enterocolitica and Listeria monocytogenes are high-risk food-borne zoonotic hazards in finishing pigs.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
February 2010
Subretinal implants are the subject of clinical investigation for their ability to evoke useful visual sensations in blind individuals via electrical stimulation of the diseased retina. We investigated the spatial characteristic of the retinal polarization obtained by electric field stimulation through a subretinally located monopolar electrode array and bipolar electrode array. By combining electric potential simulation through a boundary element method with a segmented cell model, we computed the membrane voltage at the axon terminal of the bipolar cells as a function of the axon length (50-110 microm) and the electrode diameter.
View Article and Find Full Text PDF