Publications by authors named "Matthias G von Herrath"

To enable accurate, high-throughput and longer-term studies of the immunopathogenesis of type 1 diabetes (T1D), we established three in-vitro islet-immune injury models by culturing spheroids derived from primary human islets with proinflammatory cytokines, activated peripheral blood mononuclear cells or HLA-A2-restricted preproinsulin-specific cytotoxic T lymphocytes. In all models, β-cell function declined as manifested by increased basal and decreased glucose-stimulated insulin release (GSIS), and decreased intracellular insulin content. Additional hallmarks of T1D progression such as loss of the first-phase insulin response (FFIR), increased proinsulin-to-insulin ratios, HLA-class I expression, and inflammatory cytokine release were also observed.

View Article and Find Full Text PDF

Objectives: The detection of a peripheral immune cell signature that specifically reflects autoimmunity in type 1 diabetes would enable the prediction and staging of disease on an individual basis. However, defining such a signature is technically challenging. Reliable interpretation of immune cell-related biomarkers depends on their inherent variability and, to understand this variability, longitudinal analyses are required.

View Article and Find Full Text PDF

In human type 1 diabetes and animal models of the disease, a diverse assortment of immune cells infiltrates the pancreatic islets. CD8 T cells are well represented within infiltrates and HLA multimer staining of pancreas sections provides clear evidence that islet epitope reactive T cells are present within autoimmune lesions. These effectors have been a key research focus because these cells represent an intellectually attractive culprit for β cell destruction.

View Article and Find Full Text PDF

Human leukocyte antigens of class-I (HLA-I) molecules are hyper-expressed in insulin-containing islets (ICI) of type 1 diabetic (T1D) donors. This study investigated the HLA-I expression in autoantibody positive (AAB+) donors and defined its intra-islet and intracellular localization as well as proximity to infiltrating CD8 T cells with high-resolution confocal microscopy. We found HLA-I hyper-expression had already occurred prior to clinical diagnosis of T1D in islets of AAB+ donors.

View Article and Find Full Text PDF

Since the establishment of the network for pancreatic organ donors with diabetes (nPOD), we have gained unprecedented insight into the pathology of human type 1 diabetes. Many of the pre-existing "dogmas", mostly derived from studies of animal models and sometimes limited human samples, have to be revised now. For example, we have learned that autoreactive CD8 T cells are present even in healthy individuals within the exocrine pancreas.

View Article and Find Full Text PDF

Preproinsulin (PPI) is presumably a crucial islet autoantigen found in patients with type 1 diabetes (T1D) but is also recognized by CD8 T cells from healthy individuals. We quantified PPI-specific CD8 T cells within different areas of the human pancreas from nondiabetic controls, autoantibody-positive donors, and donors with T1D to investigate their role in diabetes development. This spatial cellular quantitation revealed unusually high frequencies of autoreactive CD8 T cells supporting the hypothesis that PPI is indeed a key autoantigen.

View Article and Find Full Text PDF

The notably lobular distribution of immune lesions in type 1 diabetes (T1D) has been hypothesized to be the result of innervation within the pancreas. To investigate whether neuroimmune interactions could explain this phenomenon, we explored the impact of sympathetic signaling in the RIP-LCMV-GP mouse model of autoimmune diabetes. In this model, the CD8 T cell attack on β cells replicates a key pathogenic feature of human T1D.

View Article and Find Full Text PDF

Human herpesvirus-6 (HHV-6) is a ubiquitous pathogen associated with nervous and endocrine autoimmune disorders. The aim of this study was to investigate the presence of HHV-6 in pancreatic tissue sections from non-diabetic, auto-antibody positive (AAB+), and donors with type 1 diabetes (T1D) and explore whether there is any association between HHV-6 and MHC class I hyperexpression and CD8 T cell infiltration. HHV-6 DNA was detected by PCR and its protein was examined by indirect immunofluorescence assay followed by imaging using high-resolution confocal microscopy.

View Article and Find Full Text PDF

Indoleamine 2,3 dioxygenase-1 (IDO1) is a powerful immunoregulatory enzyme that is deficient in patients with type 1 diabetes (T1D). In this study, we present the first systematic evaluation of IDO1 expression and localization in human pancreatic tissue. Although IDO1 was constitutively expressed in β-cells from donors without diabetes, less IDO1 was expressed in insulin-containing islets from double autoantibody-positive donors and patients with recent-onset T1D, although it was virtually absent in insulin-deficient islets from donors with T1D.

View Article and Find Full Text PDF

Obesity is associated with adipose tissue inflammation, insulin resistance, and the development of type 2 diabetes (T2D). However, our knowledge is mostly based on conventional murine models and promising preclinical studies rarely translated into successful therapies. There is a growing awareness of the limitations of studies in laboratory mice, housed in abnormally hygienic specific pathogen-free (SPF) conditions, as relevant aspects of the human immune system remain unappreciated.

View Article and Find Full Text PDF

Background: Oral insulin as a preventive strategy and/or treatment of type 1 diabetes has been the target of much research. Producing oral insulins is a complex and challenging task, with numerous pitfalls, due to physiological, physical, and biochemical barriers. Our aim was to determine the impact of oral insulin on the delicate gut microbiota composition.

View Article and Find Full Text PDF

The inflammatory lesion at the pancreatic islet in type 1 diabetes (T1D) contains a heterogeneous infiltrate of T cells. In human and mouse studies, a large majority (98 to 99%) of the cytotoxic CD8 T cells (CTLs) within islets are not specific to any islet antigen and are thought to passively add to tissue damage. We show by intravital confocal microscopy the opposite, immune-regulatory function of this cohort of CTLs.

View Article and Find Full Text PDF

Many patients with type 1 diabetes (T1D) have residual β cells producing small amounts of C-peptide long after disease onset but develop an inadequate glucagon response to hypoglycemia following T1D diagnosis. The features of these residual β cells and α cells in the islet endocrine compartment are largely unknown, due to the difficulty of comprehensive investigation. By studying the T1D pancreas and isolated islets, we show that remnant β cells appeared to maintain several aspects of regulated insulin secretion.

View Article and Find Full Text PDF

Immunotherapy for type 1 diabetes (T1D) has previously focused on suppressing the autoimmune response against pancreatic beta cells to preserve endogenous insulin production and regulate glucose levels. With increased attention toward combination therapy strategies, studies indicate the multifunctional cytokine interleukin-21 (IL-21) may be a suitable target as an immuno-modulatory arm, while glucagon-like peptide-1 receptor (GLP-1R) agonists may be appropriate as a beta cell protective arm in combination therapy for T1D. We report here that treatment with anti-IL-21 monoclonal antibody delays diabetes onset in the spontaneous non-obese diabetic (NOD) and NOD.

View Article and Find Full Text PDF

Interleukin-1β (IL-1β) is known to trigger beta cell dysfunction in vitro and could potentially play a role during the pathogenesis of type 1 diabetes and type 2 diabetes. However, several clinical trials attempting to block IL-1β function have had minimal success. We therefore re-investigated local expression of IL-1β in human diabetic and non-diabetic pancreata.

View Article and Find Full Text PDF

Type 1 diabetes is characterized by the loss of insulin production caused by β-cell dysfunction and/or destruction. The hypothesis that β-cell loss occurs early during the prediabetic phase has recently been challenged. Here we show, for the first time in situ, that in pancreas sections from autoantibody-positive (Ab+) donors, insulin area and β-cell mass are maintained before disease onset and that production of proinsulin increases.

View Article and Find Full Text PDF

Aims: Glucagon-like peptide-1 (GLP-1) is an incretin hormone which stimulates insulin release and inhibits glucagon secretion from the pancreas in a glucose-dependent manner. Incretin-based therapies, consisting of GLP-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors, are used for the treatment of type 2 diabetes (T2D). Immunohistochemical studies for GLP-1R expression have been hampered previously by the use of unspecific polyclonal antibodies.

View Article and Find Full Text PDF

Cytotoxic T lymphocytes execute the killing of insulin-producing beta cells during onset of type 1 diabetes mellitus (T1D). The research community has come far in dissecting the major events in the development of this disease, but still the trigger and high-resolved information of the immunological events leading up to beta cell loss are missing. During the past decades, intravital imaging of immune responses has led to significant scientific breakthroughs in diverse models of disease, including T1D.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is an autoimmune disease characterized by the loss of pancreatic beta cells in the islets of Langerhans. Although genetic predisposition plays an important role in T1D development, studies of identical twins suggest that environmental factors such as viruses and other pathogens may be critical triggers either through direct cytolytic effect and gradual beta cell destruction, or by bystander activation of the immune system. In addition, viruses may circumvent the host immune response and have the capacity to establish chronic lifelong infections.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) play an important role in preventing effector T-cell (Teff) targeting of self-antigens that can lead to tissue destruction in autoimmune settings, including type 1 diabetes (T1D). Autoimmunity is caused in part by an imbalance between Teff and Tregs. Early attempts to treat with immunosuppressive agents have led to serious side effects, thus requiring a more targeted approach.

View Article and Find Full Text PDF