HSP90 are abundant molecular chaperones, assisting the folding of several hundred client proteins, including substrates involved in tumor growth or neurodegenerative diseases. A complex set of large ATP-driven structural changes occurs during HSP90 functional cycle. However, the existence of such structural rearrangements in apo HSP90 has remained unclear.
View Article and Find Full Text PDFHSP90 is a major molecular chaperone that helps both folding and stabilization of various client proteins often implicated in growth control and cell survival such as kinases and transcription factors. However, among HSP90 clients are also found numerous oncoproteins and, through its assistance to them, HSP90 has consequently been reported as a promising anticancer target. Several ligand chemotypes, including resorcinol type ligands, were found to inhibit HSP90, most of them in an ATP competitive manner.
View Article and Find Full Text PDFMethyl moieties are highly valuable probes for quantitative NMR studies of large proteins. Hence, their assignment is of the utmost interest to obtain information on both interactions and dynamics of proteins in solution. Here, we present the synthesis of a new precursor that allows connection of leucine and valine pro-S methyl moieties to backbone atoms by linear C-chains.
View Article and Find Full Text PDFThere is increasing evidence of a significant correlation between prolonged drug-target residence time and increased drug efficacy. Here, we report a structural rationale for kinetic selectivity between two closely related kinases: focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2). We found that slowly dissociating FAK inhibitors induce helical structure at the DFG motif of FAK but not PYK2.
View Article and Find Full Text PDFWe here report on nonequilibrium targeted molecular dynamics simulations as a tool for the estimation of protein-ligand unbinding kinetics. Correlating simulations with experimental data from SPR kinetics measurements and X-ray crystallography on two small molecule compound libraries bound to the N-terminal domain of the chaperone Hsp90, we show that the mean nonequilibrium work computed in an ensemble of trajectories of enforced ligand unbinding is a promising predictor for ligand unbinding rates. We furthermore investigate the molecular basis determining unbinding rates within the compound libraries.
View Article and Find Full Text PDFInvestigation of protein-ligand interactions is crucial during early drug-discovery processes. ATR-FTIR spectroscopy can detect label-free protein-ligand interactions with high spatiotemporal resolution. Here we immobilized, as an example, the heat shock protein HSP90 on an ATR crystal.
View Article and Find Full Text PDFDrug-target residence time (τ), one of the main determinants of drug efficacy, remains highly challenging to predict computationally and, therefore, is usually not considered in the early stages of drug design. Here, we present an efficient computational method, τ-random acceleration molecular dynamics (τRAMD), for the ranking of drug candidates by their residence time and obtaining insights into ligand-target dissociation mechanisms. We assessed τRAMD on a data set of 70 diverse drug-like ligands of the N-terminal domain of HSP90α, a pharmaceutically important target with a highly flexible binding site, obtaining computed relative residence times with an accuracy of about 2.
View Article and Find Full Text PDFResidence time and more recently the association rate constant k are increasingly acknowledged as important parameters for in vivo efficacy and safety of drugs. However, their broader consideration in drug development is limited by a lack of knowledge of how to optimize these parameters. In this study on a set of 176 heat shock protein 90 inhibitors, structure-kinetic relationships, X-ray crystallography, and molecular dynamics simulations were combined to retrieve a concrete scheme of how to rationally slow down on-rates.
View Article and Find Full Text PDFA considerable number of approved drugs show non-equilibrium binding characteristics, emphasizing the potential role of drug residence times for in vivo efficacy. Therefore, a detailed understanding of the kinetics of association and dissociation of a target-ligand complex might provide crucial insight into the molecular mechanism-of-action of a compound. This deeper understanding will help to improve decision making in drug discovery, thus leading to a better selection of interesting compounds to be profiled further.
View Article and Find Full Text PDFSyk is an essential non-receptor tyrosine kinase in intracellular immunological signaling, and the control of Syk kinase function is considered as a valuable target for pharmacological intervention in autoimmune or inflammation diseases. Upon immune receptor stimulation, the kinase activity of Syk is regulated by binding of phosphorylated immune receptor tyrosine-based activating motifs (pITAMs) to the N-terminal tandem Src homology 2 (tSH2) domain and by autophosphorylation with consequences for the molecular structure of the Syk protein. Here, we present the first crystal structures of full-length Syk (fl-Syk) as wild type and as Y348F,Y352F mutant forms in complex with AMP-PNP revealing an autoinhibited conformation.
View Article and Find Full Text PDFThe leech protein Saratin from Hirudo medicinalis prevents thrombocyte aggregation by interfering with the first binding step of the thrombocytes to collagen by binding to collagen. We solved the three-dimensional structure of the leech protein Saratin in solution and identified its collagen binding site by NMR titration experiments. The NMR structure of Saratin consists of one alpha-helix and a five-stranded beta-sheet arranged in the topology betabetaalphabetabetabeta.
View Article and Find Full Text PDFConnexin43 is degraded by the proteasomal as well as the lysosomal pathway with ubiquitin playing a role in both degradation pathways. So far, no ubiquitin protein ligase has been identified for any of the connexins. By using pull-down assays, here we show binding of a ubiquitin protein ligase, Nedd4, to the C-terminus of connexin43.
View Article and Find Full Text PDFPrevious studies have shown that foamy virus (FV) particle budding, especially the involvement of the viral env glycoprotein is different from that of other (ortho) retroviruses: the N-terminal Env leader protein Elp is a constituent of released FV particles. A defined sequence in Elp required for particle budding binds to the MA domain of Gag. To extend these findings, we show that feline FV Elp is a membrane-anchored protein with the N-terminus located inside the particle.
View Article and Find Full Text PDFThe structural basis for the divalent cation-dependent binding of heterodimeric alphabeta integrins to their ligands, which contain the prototypical Arg-Gly-Asp sequence, is unknown. Interaction with ligands triggers tertiary and quaternary structural rearrangements in integrins that are needed for cell signaling. Here we report the crystal structure of the extracellular segment of integrin alphaVbeta3 in complex with a cyclic peptide presenting the Arg-Gly-Asp sequence.
View Article and Find Full Text PDF