Publications by authors named "Matthias Forkel"

While numerous studies report shifts in vegetation phenology, in this regard eddy covariance (EC) data, despite its continuous high-frequency observations, still requires further exploration. Furthermore, there is no general consensus on optimal methodologies for data smoothing and extracting phenological transition dates (PTDs). Here, we revisit existing methodologies and present new prospects to investigate phenological changes in gross primary productivity (GPP) from EC measurements.

View Article and Find Full Text PDF

The response of vegetation physiology to drought at large spatial scales is poorly understood due to a lack of direct observations. Here, we study vegetation drought responses related to photosynthesis, evaporation, and vegetation water content using remotely sensed data, and we isolate physiological responses using a machine learning technique. We find that vegetation functional decreases are largely driven by the downregulation of vegetation physiology such as stomatal conductance and light use efficiency, with the strongest downregulation in water-limited regions.

View Article and Find Full Text PDF

Global vegetation and associated ecosystem services critically depend on soil moisture availability which has decreased in many regions during the last three decades. While spatial patterns of vegetation sensitivity to global soil water have been recently investigated, long-term changes in vegetation sensitivity to soil water availability are still unclear. Here we assess global vegetation sensitivity to soil moisture during 1982-2017 by applying explainable machine learning with observation-based leaf area index (LAI) and hydro-climate anomaly data.

View Article and Find Full Text PDF

The leaf economics spectrum and the global spectrum of plant forms and functions revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species. Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability.

View Article and Find Full Text PDF
Article Synopsis
  • Biomass burning affects plants and the atmosphere, especially during extreme weather, and researchers want to understand why the amount of burned area changes from year to year.
  • They studied data from satellites between 2001 and 2018 to find patterns in this variability, looking at how human actions and climate factors influence it.
  • The research found that places with more human influence see less variability in burning, while climate factors like temperature and rainfall also play big roles, especially in different regions around the world.
View Article and Find Full Text PDF

In this study, we use simulations from seven global vegetation models to provide the first multi-model estimate of fire impacts on global tree cover and the carbon cycle under current climate and anthropogenic land use conditions, averaged for the years 2001-2012. Fire globally reduces the tree covered area and vegetation carbon storage by 10%. Regionally, the effects are much stronger, up to 20% for certain latitudinal bands, and 17% in savanna regions.

View Article and Find Full Text PDF

The response of land ecosystems to future climate change is among the largest unknowns in the global climate-carbon cycle feedback. This uncertainty originates from how dynamic global vegetation models (DGVMs) simulate climate impacts on changes in vegetation distribution, productivity, biomass allocation, and carbon turnover. The present-day availability of a multitude of satellite observations can potentially help to constrain DGVM simulations within model-data integration frameworks.

View Article and Find Full Text PDF

Climate change is shifting the phenological cycles of plants, thereby altering the functioning of ecosystems, which in turn induces feedbacks to the climate system. In northern (north of 30° N) ecosystems, warmer springs lead generally to an earlier onset of the growing season and increased ecosystem productivity early in the season. In situ and regional studies also provide evidence for lagged effects of spring warmth on plant productivity during the subsequent summer and autumn.

View Article and Find Full Text PDF

Ecosystem water-use efficiency (WUE) is an important metric linking the global land carbon and water cycles. Eddy covariance-based estimates of WUE in temperate/boreal forests have recently been found to show a strong and unexpected increase over the 1992-2010 period, which has been attributed to the effects of rising atmospheric CO concentrations on plant physiology. To test this hypothesis, we forced the observed trend in the process-based land surface model JSBACH by increasing the sensitivity of stomatal conductance (g ) to atmospheric CO concentration.

View Article and Find Full Text PDF

Atmospheric monitoring of high northern latitudes (above 40°N) has shown an enhanced seasonal cycle of carbon dioxide (CO2) since the 1960s, but the underlying mechanisms are not yet fully understood. The much stronger increase in high latitudes relative to low ones suggests that northern ecosystems are experiencing large changes in vegetation and carbon cycle dynamics. We found that the latitudinal gradient of the increasing CO2 amplitude is mainly driven by positive trends in photosynthetic carbon uptake caused by recent climate change and mediated by changing vegetation cover in northern ecosystems.

View Article and Find Full Text PDF

Identifying the relative importance of climatic and other environmental controls on the interannual variability and trends in global land surface phenology and greenness is challenging. Firstly, quantifications of land surface phenology and greenness dynamics are impaired by differences between satellite data sets and phenology detection methods. Secondly, dynamic global vegetation models (DGVMs) that can be used to diagnose controls still reveal structural limitations and contrasting sensitivities to environmental drivers.

View Article and Find Full Text PDF

The response of the terrestrial carbon cycle to climate change is among the largest uncertainties affecting future climate change projections. The feedback between the terrestrial carbon cycle and climate is partly determined by changes in the turnover time of carbon in land ecosystems, which in turn is an ecosystem property that emerges from the interplay between climate, soil and vegetation type. Here we present a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times that combines new estimates of vegetation and soil organic carbon stocks and fluxes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmohd14jr952id95ph3e5hk4mgmb3ta67): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once