The thermodynamic state of the interface in which an enzyme is embedded can regulate the enzymatic activity. Indeed, it has been demonstrated by others and us that close to the maximum in compressibility, the activity of the enzyme is at a maximum as well. Pulses propagating along the interface can modulate the interface state and were demonstrated to be able to modulate the activity of interface-associated acetylcholinesterase (AChE).
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
January 2023
Ever since the pioneering studies in the 1960s and 70s, the importance of order transitions for cell membrane functions has remained a matter of debate. Recently, it has been proposed that the nonlinear stimulus-response curve of excitable cells, which manifests in all-or-none pulses (action potentials (AP)), is due to a transition in the cell membrane. Indeed, evidence for transitions has accumulated in plant cells and neurons, but studies with other excitable cells are expedient in order to show if this finding is of a general nature.
View Article and Find Full Text PDFThe existence of acoustic pulse propagation in lipid monolayers at the air-water interface is well known. These pulses are controlled by the thermodynamic state of the lipid membrane. Nevertheless, the role of acoustic pulses for intra- and inter-cellular communication is still a matter of debate.
View Article and Find Full Text PDFSingle cell measurements with living specimen like, for example, the ciliated protozoan can be a challenging task. We present here a microfluidic trapping mechanism for measurements with these micro-organisms that can be used, e.g.
View Article and Find Full Text PDFThe origin of nonlinear responses in cells has been suggested to be crucial for various cell functions including the propagation of the nervous impulse. In physics, nonlinear behavior often originates from phase transitions. Evidence for such transitions on the single-cell level, however, has so far not been provided, leaving the field unattended by the biological community.
View Article and Find Full Text PDFIn cholinergic synapses, the neurotransmitter acetylcholine (ACh) is rapidly hydrolyzed by esterases to choline and acetic acid (AH). It is believed that this reaction serves the purpose of deactivating ACh once it has exerted its effect on a receptor protein (AChR). The protons liberated in this reaction, however, may by themselves excite the postsynaptic membrane.
View Article and Find Full Text PDFMembrane-associated enzymes have been found to behave differently qualitatively and quantitatively in terms of activity. These findings were highly debated in the 1970s and many general correlations and reaction specific models have been proposed, reviewed, and discarded. However, new biological applications brought up the need for clarification and elucidation.
View Article and Find Full Text PDFProg Biophys Mol Biol
July 2021
One of the most striking phenomena in biology is the action potential (AP), a nonlinear pulse with threshold and amplitude saturation (all-or-none-behavior) that propagates along neurons and other cells. In the classical interpretation the AP is considered to be an electrical phenomenon - a regenerating current flowing in a "biological cable". In contrast, the thermodynamic interpretation has emphasized that conservation laws necessitate pulses and that pulses must manifest as transient changes of all observables of the system (electrical, mechanical, thermal, etc.
View Article and Find Full Text PDFThis article attempts to review our work in the field since 2008, attempts to put it in a coherent framework and takes a courageous look vis-à-vis the bigger picture. It summarizes our approach, successes and open questions to start from physical principles when approaching living systems. It stresses the importance of conservation laws versus material and/or structural approaches to living systems commonly taken in (molecular) biology.
View Article and Find Full Text PDFThe thermodynamic (TD) properties of biological membranes play a central role for living systems. It has been suggested, for instance, that nonlinear pulses such as action potentials (APs) can only exist if the membrane state is in vicinity of a TD transition. Herein, two membrane properties in living systems - excitability and velocity - are analyzed for a broad spectrum of conditions (temperature (T), 3D-pressure (p) and pH-dependence).
View Article and Find Full Text PDFBackground: It has been demonstrated that von Willebrand factor (VWF) mediated platelet-endothelium and platelet-platelet interactions are shear dependent. The VWF's mobility under dynamic conditions (e.g.
View Article and Find Full Text PDFProg Biophys Mol Biol
July 2021
Experimental observations in lipid monolayers at the air-water interface have demonstrated that solitary sound pulses can be excited. These pulses propagate electrical, chemical, and thermal variations in addition to the mechanical changes in lateral pressure and lipid density, and can interact with nearby ions, polymers, and water. In addition, it was demonstrated that sound pulses that reversibly traverse the melting transition between the so-called liquid-expanded and liquid-condensed phases display unusual nonlinear properties that are strikingly similar to those of action potentials in living cells.
View Article and Find Full Text PDFEur Phys J E Soft Matter
February 2020
Environmental temperature has a well-conserved effect on the pulse velocity and excitability of excitable biological systems. The consistency suggests that the cause originates from a fundamental principle. A physical (hydrodynamic) approach has proposed that the thermodynamic state of the hydrated interface (e.
View Article and Find Full Text PDFIn an ongoing debate on the physical nature of the action potential (AP), one group adheres to the electrical model of Hodgkin and Huxley, while the other describes the AP as a nonlinear acoustic pulse propagating within an interface near a transition. However, despite remarkable similarities, acoustics remains a non-intuitive mechanism for APs for the following reason. While acoustic pulses are typically associated with the propagation of density, pressure and temperature variation, APs are most commonly measured electrically.
View Article and Find Full Text PDFAn action potential is typically described as a purely electrical change that propagates along the membrane of excitable cells. However, recent experiments have demonstrated that non-linear acoustic pulses that propagate along lipid interfaces and traverse the melting transition, share many similar properties with action potentials. Despite the striking experimental similarities, a comprehensive theoretical study of acoustic pulses in lipid systems is still lacking.
View Article and Find Full Text PDFUltrasound is increasingly being used to modulate the properties of biological membranes for applications in drug delivery and neuromodulation. While various studies have investigated the mechanical aspects of the interaction such as acoustic absorption and membrane deformation, it is not clear how these effects transduce into biological functions, for example, changes in the permeability or the enzymatic activity of the membrane. A critical aspect of the activity of an enzyme is the thermal fluctuations of its solvation or hydration shell.
View Article and Find Full Text PDFMicroangiopathy with subsequent organ damage represents a major complication in several diseases. The mechanisms leading to microvascular occlusion include von Willebrand factor (VWF), notably the formation of ultra-large von Willebrand factor fibers (ULVWFs) and platelet aggregation. To date, the contribution of erythrocytes to vascular occlusion is incompletely clarified.
View Article and Find Full Text PDFNerve impulses, previously proposed as manifestations of nonlinear acoustic pulses localized at the plasma membrane, can annihilate upon collision. However, whether annihilation of acoustic waves at interfaces takes place is unclear. We previously showed the propagation of nonlinear sound waves that propagate as solitary waves above a threshold (super-threshold) excitation in a lipid monolayer near a phase transition.
View Article and Find Full Text PDFThe excitation of many cells and tissues is associated with cell mechanical changes. The evidence presented herein corroborates that single cells deform during an action potential. It is demonstrated that excitation of plant cells (Chara braunii internodes) is accompanied by out-of-plane displacements of the cell surface in the micrometer range (∼1-10 μm).
View Article and Find Full Text PDFElectric pulses in biological cells (action potentials) have been reported to be accompanied by a propagating cell-surface deformation with a nanoscale amplitude. Typically, this cell surface is covered by external layers of polymer material (extracellular matrix, cell wall material, etc.).
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
December 2017
Background: It is a common incident in nature, that two waves or pulses run into each other head-on. The outcome of such an event is of special interest, because it allows conclusions about the underlying physical nature of the pulses. The present experimental study dealt with the head-on meeting of two action potentials (AP) in a single excitable plant cell (Chara braunii internode).
View Article and Find Full Text PDFLocal changes in pH are known to significantly alter the state and activity of proteins and enzymes. pH variations induced by pulses propagating along soft interfaces (e.g.
View Article and Find Full Text PDF