Learning a motor skill involves a latent process of consolidation that develops after training to enhance the skill in the absence of any practice and crucially depends on sleep. Here, we show that this latent consolidation during sleep changes the brain representation of the motor skill by reducing overall the neocortical contributions to the representation. Functional magnetic resonance brain imaging was performed during initial training and 48 h later, at retesting, on a sequential finger movement task with training followed by either a night of regular sleep or sleep deprivation.
View Article and Find Full Text PDFWhat mechanisms allow us to direct a precise saccade to a remembered target position in space? The cerebellum has been proposed to be involved not only in motor and oculomotor control, but also in perceptual and cognitive functions. We used functional MRI (Echoplanar imaging at 1.5 T) to investigate the role of the cerebellum in the control of externally triggered and internally generated saccadic eye movements of high and low memory impact, in six healthy volunteers.
View Article and Find Full Text PDFMany cases of myoclonus-dystonia (M-D) are caused by mutations in the epsilon-sarcoglycan (SGCE) gene. We describe 3 children with a similar clinical picture of autosomal dominant M-D and an SGCE mutation in only one of them, suggesting that M-D is genetically heterogeneous.
View Article and Find Full Text PDFWe investigated the modulation of cerebellar activation by predictive and non-predictive sequential finger movements. It is hypothesized that the prediction of desired movement sequences and adaptation to new movement parameters is mediated by the cerebellum. Using functional MRI at 1.
View Article and Find Full Text PDF