The tunnelling current in scanning tunnelling spectroscopy (STS) is typically and often implicitly modelled by a continuous and homogeneous charge flow. If the charging energy of a single-charge quantum sufficiently exceeds the thermal energy, however, the granularity of the current becomes non-negligible. In this quantum limit, the capacitance of the tunnel junction mediates an interaction of the tunnelling electrons with the surrounding electromagnetic environment and becomes a source of noise itself, which cannot be neglected in STS.
View Article and Find Full Text PDFProbing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111).
View Article and Find Full Text PDFWe present an innovative approach to the production of single-crystal iron oxide nanorings employing a solution-based route. Single-crystal hematite (alpha-Fe2O3) nanorings were synthesized using a double anion-assisted hydrothermal method (involving phosphate and sulfate ions), which can be divided into two stages: (1) formation of capsule-shaped alpha-Fe2O3 nanoparticles and (2) preferential dissolution along the long dimension of the elongated nanoparticles (the c axis of alpha-Fe2O3) to form nanorings. The shape of the nanorings is mainly regulated by the adsorption of phosphate ions on faces parallel to c axis of alpha-Fe2O3 during the nanocrystal growth, and the hollow structure is given by the preferential dissolution of the alpha-Fe2O3 along the c axis due to the strong coordination of the sulfate ions.
View Article and Find Full Text PDF