The increasing utilization of artificial intelligence (AI) in the medical field holds the potential to address the global shortage of doctors. However, various challenges, such as usability, privacy, inequality, and misdiagnosis, complicate its application. This literature review focuses on AI's role in cardiology, specifically its impact on the diagnostic accuracy of AI algorithms analyzing 12-lead electrocardiograms (ECGs) to detect left ventricular hypertrophy (LVH).
View Article and Find Full Text PDFPrognostic biomarkers can have an important role in the clinical practice because they allow stratification of patients in terms of predicting the outcome of a disorder. Obstacles for developing such markers include lack of robustness when using different data sets and limited concordance among similar signatures. In this paper, we highlight a new problem that relates to the biological meaning of already established prognostic gene expression signatures.
View Article and Find Full Text PDFWe propose a new epidemic model considering the partial mapping relationship in a two-layered time-varying network, which aims to study the influence of information diffusion on epidemic spreading. In the model, one layer represents the epidemic-related information diffusion in the social networks, while the other layer denotes the epidemic spreading in physical networks. In addition, there just exist mapping relationships between partial pairs of nodes in the two-layered network, which characterizes the interaction between information diffusion and epidemic spreading.
View Article and Find Full Text PDFHigh-throughput technologies do not only provide novel means for basic biological research but also for clinical applications in hospitals. For instance, the usage of gene expression profiles as prognostic biomarkers for predicting cancer progression has found widespread interest. Aside from predicting the progression of patients, it is generally believed that such prognostic biomarkers also provide valuable information about disease mechanisms and the underlying molecular processes that are causal for a disorder.
View Article and Find Full Text PDFThe Cross-Industry Standard Process for Data Mining (CRISP-DM) is a widely accepted framework in production and manufacturing. This data-driven knowledge discovery framework provides an orderly partition of the often complex data mining processes to ensure a practical implementation of data analytics and machine learning models. However, the practical application of robust industry-specific data-driven knowledge discovery models faces multiple data- and model development-related issues.
View Article and Find Full Text PDFThe ultimate goal of the social sciences is to find a general social theory encompassing all aspects of social and collective phenomena. The traditional approach to this is very stringent by trying to find causal explanations and models. However, this approach has been recently criticized for preventing progress due to of models that support more problem-oriented approaches.
View Article and Find Full Text PDFAt the beginning of 2020, the COVID-19 pandemic was able to spread quickly in Wuhan and in the province of Hubei due to a lack of experience with this novel virus. Additionally, authories had no proven experience with applying insufficient medical, communication and crisis management tools. For a considerable period of time, the actual number of people infected was unknown.
View Article and Find Full Text PDFFront Artif Intell
December 2020
The field artificial intelligence (AI) was founded over 65 years ago. Starting with great hopes and ambitious goals the field progressed through various stages of popularity and has recently undergone a revival through the introduction of deep neural networks. Some problems of AI are that, so far, neither the "intelligence" nor the goals of AI are formally defined causing confusion when comparing AI to other fields.
View Article and Find Full Text PDFFront Artif Intell
February 2020
Deep learning models stand for a new learning paradigm in artificial intelligence (AI) and machine learning. Recent breakthrough results in image analysis and speech recognition have generated a massive interest in this field because also applications in many other domains providing big data seem possible. On a downside, the mathematical and computational methodology underlying deep learning models is very challenging, especially for interdisciplinary scientists.
View Article and Find Full Text PDFThe identification of prognostic biomarkers for predicting cancer progression is an important problem for two reasons. First, such biomarkers find practical application in a clinical context for the treatment of patients. Second, interrogation of the biomarkers themselves is assumed to lead to novel insights of disease mechanisms and the underlying molecular processes that cause the pathological behavior.
View Article and Find Full Text PDFGene ontology (GO) is an eminent knowledge base frequently used for providing biological interpretations for the analysis of genes or gene sets from biological, medical and clinical problems. Unfortunately, the interpretation of such results is challenging due to the large number of GO terms, their hierarchical and connected organization as directed acyclic graphs (DAGs) and the lack of tools allowing to exploit this structural information explicitly. For this reason, we developed the R package GOxploreR.
View Article and Find Full Text PDFFront Cell Dev Biol
August 2020
The number of scientific publications in the literature is steadily growing, containing our knowledge in the biomedical, health, and clinical sciences. Since there is currently no automatic archiving of the obtained results, much of this information remains buried in textual details not readily available for further usage or analysis. For this reason, natural language processing (NLP) and text mining methods are used for information extraction from such publications.
View Article and Find Full Text PDFBackground: The small number of samples and the curse of dimensionality hamper the better application of deep learning techniques for disease classification. Additionally, the performance of clustering-based feature selection algorithms is still far from being satisfactory due to their limitation in using unsupervised learning methods. To enhance interpretability and overcome this problem, we developed a novel feature selection algorithm.
View Article and Find Full Text PDFThe task of predicting protein-protein interactions (PPIs) has been essential in the context of understanding biological processes. This paper proposes a novel computational model namely FCTP-WSRC to predict PPIs effectively. Initially, combinations of the F-vector, composition (C) and transition (T) are used to map each protein sequence onto numeric feature vectors.
View Article and Find Full Text PDFArtificial intelligence provides the opportunity to reveal important information buried in large amounts of complex data. Electronic health records (eHRs) are a source of such big data that provide a multitude of health related clinical information about patients. However, text data from eHRs, e.
View Article and Find Full Text PDFModern molecular high-throughput devices, e.g., next-generation sequencing, have transformed medical research.
View Article and Find Full Text PDFSocial media data, for instance from Twitter or Facebook, provide a new type of data that consist of a mixture of text, image and video information. From a scientific point of view, the capabilities of this type of data from such microblogs are not well explored and to date it is largely unknown what principal knowledge can be extracted thereof. In this paper, we present a discussion of the capabilities of data from microblogs for performing a psychoanalysis.
View Article and Find Full Text PDFBackground: Deciphering the meaning of the human DNA is an outstanding goal which would revolutionize medicine and our way for treating diseases. In recent years, non-coding RNAs have attracted much attention and shown to be functional in part. Yet the importance of these RNAs especially for higher biological functions remains under investigation.
View Article and Find Full Text PDFWiley Interdiscip Rev Data Min Knowl Discov
February 2019
Binary decision making is a topic of great interest for many fields, including biomedical science, economics, management, politics, medicine, natural science and social science, and much effort has been spent for developing novel computational methods to address problems arising in the aforementioned fields. However, in order to evaluate the effectiveness of any prediction method for binary decision making, the choice of the most appropriate error measures is of paramount importance. Due to the variety of error measures available, the evaluation process of binary decision making can be a complex task.
View Article and Find Full Text PDFThe LINCS L1000 data repository contains almost two million gene expression profiles for thousands of small molecules and drugs. However, due to the complexity and the size of the data repository and a lack of an interoperable interface, the creation of pharmacologically meaningful workflows utilizing these data is severely hampered. In order to overcome this limitation, we developed the L1000 Viewer, a search engine and graphical web interface for the LINCS data repository.
View Article and Find Full Text PDFTowing is a critical process to deploy a cylindrical drilling platform. However, the towing process faces a great variety of risks from a complex nautical environment, the dynamics in towing and maneuvering, to unexpected events. Therefore, safely navigating the towing system following a planned route to a target sea area is essential.
View Article and Find Full Text PDFModern research in the biomedical sciences is data-driven utilizing high-throughput technologies to generate big genomic data. The Library of Integrated Network-based Cellular Signatures (LINCS) is an example for a large-scale genomic data repository providing hundred thousands of high-dimensional gene expression measurements for thousands of drugs and dozens of cell lines. However, the remaining challenge is how to use these data effectively for pharmacogenomics.
View Article and Find Full Text PDFGenomics data provide great opportunities for translational research and the clinical practice, for example, for predicting disease stages. However, the classification of such data is a challenging task due to their high dimensionality, noise, and heterogeneity. In recent years, deep learning classifiers generated much interest, but due to their complexity, so far, little is known about the utility of this method for genomics.
View Article and Find Full Text PDFIn this paper, we study several distance-based entropy measures on fullerene graphs. These include the topological information content of a graph I a ( G ) , a degree-based entropy measure, the eccentric-entropy I f σ ( G ) , the Hosoya entropy H ( G ) and, finally, the radial centric information entropy H e c c . We compare these measures on two infinite classes of fullerene graphs denoted by A 12 n + 4 and B 12 n + 6 .
View Article and Find Full Text PDF