Endocytosis of caveolae has previously been implicated in the repair of plasma membrane wounds. Here, we show that caveolin-1-deficient fibroblasts lacking caveolae upregulate a tubular endocytic pathway and have a reduced capacity to reseal after permeabilization with pore-forming toxins compared with wild-type cells. Silencing endophilin-A2 expression inhibited fission of endocytic tubules and further reduced plasma membrane repair in cells lacking caveolin-1, supporting a role for tubular endocytosis as an alternative pathway for the removal of membrane lesions.
View Article and Find Full Text PDFThe ability of repairing damages on the plasma membrane is crucial for cell survival. When damaged, eukaryotic cells are able to recover plasma membrane integrity within a few seconds, thus avoiding cytoplasm leakage and cell death. The process is driven by the influx of extracellular calcium which triggers a multitude of intracellular effects that participate in the process of plasma membrane resealing.
View Article and Find Full Text PDFTissue wound repair has been studied extensively. It involves the coordinated activation of several intracellular and intercellular pathways, as well as remodeling from the sequential recruitment of different cell types to the wound site. There is, however, an equally important process that happens at the single cell level, when the integrity of the plasma membrane is compromised.
View Article and Find Full Text PDFEukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca(2+)-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal.
View Article and Find Full Text PDFCells rapidly repair plasma membrane (PM) damage by a process requiring Ca(2+)-dependent lysosome exocytosis. Acid sphingomyelinase (ASM) released from lysosomes induces endocytosis of injured membrane through caveolae, membrane invaginations from lipid rafts. How B lymphocytes, lacking any known form of caveolin, repair membrane injury is unknown.
View Article and Find Full Text PDFThe process of host cell invasion by Trypanosoma cruzi shares mechanistic elements with plasma membrane injury and repair. Both processes require Ca(2+)-triggered exocytosis of lysosomes, exocytosis of acid sphingomyelinase and formation of ceramide-enriched endocytic compartments. T.
View Article and Find Full Text PDFWhen wounded, eukaryotic cells reseal in a few seconds. Ca(2+) influx induces exocytosis of lysosomes, a process previously thought to promote repair by 'patching' wounds. New evidence suggests that resealing involves direct wound removal.
View Article and Find Full Text PDFRapid repair of plasma membrane wounds is critical for cellular survival. Muscle fibers are particularly susceptible to injury, and defective sarcolemma resealing causes muscular dystrophy. Caveolae accumulate in dystrophic muscle fibers and caveolin and cavin mutations cause muscle pathology, but the underlying mechanism is unknown.
View Article and Find Full Text PDFIn addition to forming bilayers to separate cellular compartments, lipids participate in vesicular trafficking and signal transduction. Among others, phosphatidic acid (PA) is emerging as an important signaling molecule. The spatiotemporal distribution of cellular PA appears to be tightly regulated by localized synthesis and a rapid metabolism.
View Article and Find Full Text PDFCells permeabilized by the bacterial pore-forming toxin streptolysin O (SLO) reseal their plasma membrane in a Ca(2+) -dependent manner. Resealing involves Ca(2+) -dependent exocytosis of lysosomes, release of acid sphingomyelinase and rapid formation of endosomes that carry the transmembrane pores into the cell. The intracellular fate of the toxin-carrying endocytic vesicles, however, is still unknown.
View Article and Find Full Text PDFPhagocytosis is an essential element of the immune response permitting the elimination of pathogens, cellular debris, apoptotic cells, and tumor cells. Recently, both phospholipase D (PLD) isoforms, PLD1 and PLD2, were shown to be necessary for efficient FcgammaR-mediated phagocytosis. In this study, we investigated the role of a potential PLD regulator, the Ral GTPases RalA and RalB, in murine RAW 264.
View Article and Find Full Text PDFPhospholipase D (PLD) produces phosphatidic acid (PA), an established intracellular signalling lipid that has been also implicated in vesicular trafficking, and as such, PLD could play multiple roles during phagocytosis. Using an RNA interference strategy, we show that endogenous PLD1 and PLD2 are necessary for efficient phagocytosis in murine macrophages, in line with results obtained with wild-type constructs and catalytically inactive PLD mutants which, respectively, enhance and inhibit phagocytosis. Furthermore, we found that PA is transiently produced at sites of phagosome formation.
View Article and Find Full Text PDFThe inflammatory response in prion diseases is dominated by microglial activation. As macrophages of the central nervous system, the phagocytic capacity of microglia is well recognized, and it is possible that microglia are involved in the removal and processing of amyloid fibrils, thus preventing their harmful effect. We have analyzed the effects of a synthetic peptide of the human prion protein, PrP(106-126), which can form fibrils, and the pathogenic form of prion protein, PrPsc, on phagocytosis in microglia isolated from neonatal rat brain cultures.
View Article and Find Full Text PDF